## Snow Creek Stream Restoration 2006 Monitoring Report Monitoring Year Two

**Ecosystem Enhancement Program Project Number 00344** 



Submitted to:

Prepared by:

Project Designed by:

NCDENR-Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

URS Corporation – North Carolina 1600 Perimeter Park Drive, Suite 400 Morrisville, NC 27560

EcoLogic Associates, P.C. 4321-A S. Elm-Eugene St. Greensboro, NC 27406

Submitted: January 19, 2007



## TABLE OF CONTENTS

| 1.0                                                                                                      | EXE                                                            | CUTIVE SUMMARY/PROJECT ABSTRACT                                                                                                                                            | .1                                                                    |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 2.0                                                                                                      | PRO                                                            | JECT BACKGROUND                                                                                                                                                            | .3                                                                    |
|                                                                                                          | 2.1<br>2.2<br>2.3<br>2.4<br>2.5                                | PROJECT OBJECTIVES<br>PROJECT STRUCTURE, MITIGATION TYPE, AND APPROACH<br>LOCATION AND SETTING<br>PROJECT HISTORY AND BACKGROUND<br>MONITORING PLAN VIEW                   | .3<br>.3<br>.6                                                        |
| 3.0                                                                                                      | PRO                                                            | JECT CONDITION AND MONITORING RESULTS                                                                                                                                      | 12                                                                    |
| 4.0                                                                                                      | <ul> <li>3.1</li> <li>3.2</li> <li>MET</li> <li>4.1</li> </ul> | VEGETATION ASSESSMENT                                                                                                                                                      | 12<br>12<br>13<br>13<br>13<br>14<br>14<br>15<br>15<br>15<br><b>25</b> |
| 5.0                                                                                                      | 4.2<br>REF                                                     | VEGETATION METHODOLOGY                                                                                                                                                     |                                                                       |
| Figur<br>Figur<br>Figur<br>Figur<br>Figur                                                                | re 1.<br>re 2.<br>re 3.<br>re 4.                               | Project Vicinity<br>Monitoring Plan View<br>Vegetative Problem Areas Plan ViewAppendix A-J<br>USGS Stream Gage Discharge Data<br>Stream Problem Areas Plan ViewAppendix B- | 9<br>III<br>14                                                        |
| ТАВ                                                                                                      | LES                                                            |                                                                                                                                                                            |                                                                       |
| Table I.<br>Table II.<br>Table IV.<br>Table V.<br>Table VIa.<br>Table VIb.<br>Table VIIa.<br>Table VIIa. |                                                                |                                                                                                                                                                            | .7<br>7<br>.8<br>13<br>15<br>15<br>6                                  |

| Table VIIIa. | Morphology and Hydraulic Monitoring Summary –                 |               |    |
|--------------|---------------------------------------------------------------|---------------|----|
|              | Reach 1                                                       |               | 20 |
| Table VIIIb. | Morphology and Hydraulic Monitoring Summary –                 |               |    |
|              | Reach 2                                                       |               | 21 |
| Table VIIIc. | Morphology and Hydraulic Monitoring Summary –                 |               |    |
|              | Snow Creek                                                    | ,<br>         | 22 |
| Table VIIId. | Morphology and Hydraulic Monitoring Summary –                 |               |    |
|              | Unnamed                                                       |               |    |
|              | Tributary                                                     | 2             | 23 |
| Table VIIIe. | Morphology and Hydraulic Monitoring Summary –                 |               |    |
|              | Unnamed Tributary                                             | ,<br>         | 24 |
| Table A1.    | Vegetation Metadata                                           | .Appendix A-I |    |
| Table A2.    | Vegetation Vigor by Species                                   | Appendix A-I  |    |
| Table A3.    | Vegetation Damage by Species                                  | Appendix A-I  |    |
| Table A4.    | Vegetation Damage by Plot                                     | Appendix A-I  |    |
| Table A5.    | Stem Count by Plot and Species                                | .Appendix A-I |    |
| Table A6a.   | Vegetative Problem Area Table – Snow Creek                    | Appendix A-I. |    |
| Table A6b.   | Vegetative Problem Area Table – Unnamed Tribu                 | Appendix A-I  |    |
| Table B1a.   | Stream Problem Areas Table – Snow Creek                       | Appendix B-II |    |
| Table B1b.   | Stream Problem Areas Table – Unnamed Tributary                | Appendix B-II |    |
| Table B2a.   | Visual Morphological Stability Assessment - Snow Creek        | .Appendix B-V |    |
| Table B2b.   | Visual Morphological Stability Assessment - Unnamed Tributary | .Appendix B-V |    |

## APPENDICES

| Appendix A | Vegetation Ra | w Data                                            |
|------------|---------------|---------------------------------------------------|
|            | I.            | Vegetation Survey Data Tables                     |
|            | II.           | Vegetative Problem Area Photos                    |
|            | III.          | Vegetative Problem Areas Plan View                |
|            | IV.           | Vegetation Monitoring Plot Photos                 |
| Appendix B | Geomo         | orphic Raw Data                                   |
|            | I.            | Stream Problem Areas Plan View                    |
|            | II.           | Stream Problem Areas Data Tables                  |
|            | III.          | Representative Stream Problem Areas Photos        |
|            | IV.           | Stream Photo Station Photos                       |
|            | V.            | Visual Morphological Stability Assessment         |
|            | VI.           | Cross Section Photos and Annual Overlays of Plots |
|            | VII.          | Annual Overlays of Longitudinal Plots             |
|            | VIII.         | Pebble Count Frequency Distribution Plots         |

## 1.0 EXECUTIVE SUMMARY/PROJECT ABSTRACT

URS Corporation (URS) was retained by the North Carolina Ecosystem Enhancement Program (EEP) to conduct stream monitoring at the Snow Creek stream restoration project, located in the Upper Dan River Watershed of the Upper Roanoke River Basin in Stokes County. The stream monitoring effort conducted by URS in October 2006 represents Monitoring Year 2 for this project. Prior to the monitoring effort, URS received a digital As-Built drawing for the project site from EEP. In addition, URS received the Snow Creek Stream Restoration Design Report prepared by EcoLogic Associates, P.C. (EcoLogic 2002), and a Year 1 Monitoring Report also produced by EcoLogic Associates, P.C. (EcoLogic 2006).

The North Carolina Ecosystem Enhancement Program (EEP) initiated the restoration of 3,310 linear feet of Snow Creek and 700 feet of an unnamed tributary in 2002. The original condition of Snow Creek included very steep, tall banks, with a single row of mature trees at the top of the banks. Snow Creek was straightened by previous landowners to optimize the floodplain for agricultural fields and pastures.

The goals and objectives of the Snow Creek Stream Restoration were to: improve water quality by reducing the sediment load generated by eroding banks and by restoring a riparian buffer; reestablish stable channel dimension, pattern, and profile; restore a functional floodplain; enhance aquatic and terrestrial habitat in the stream corridor; provide a stable ford across the main channel for tractor access; provide two pedestrian bridges across the main channel for access to the temple property and agricultural fields; and enhance habitat in the main channel and tributary for small-anthered bittercress (*Cardamine micranthera*), a federally endangered plant that occurs in the Snow Creek channel.

The morphological restoration included significant increases in belt width accomplished through the construction of new meander bends and bankfull benches. Gently sloping transitions were incorporated between the channel bottom and top of bank. Rock vanes, root wads, and coir matting provide bank protection, and cross vanes provide grade control while promoting pool development.

Riparian corridor restoration included the preservation of as many mature streamside trees as possible, construction of two ford crossings, planting of native herbs and woody plants in the easement area, and fencing the conservation easement to prevent disturbance by livestock.

Planted woody vegetation survival at the site is excellent. Live stakes are thick along the banks of Snow Creek and the Unnamed Tributary. Native herbaceous vegetation is filling in along the banks and floodplain. Most vegetative problem areas identified during 2005 monitoring have filled in naturally over the last year. Only two problem areas associated with bare banks and/or floodplains remain.

The presence of Japanese stilt grass (*Microstegium vimineum*) poses a concern at the site. During 2006 monitoring, it was observed along the entire right bank of the Unnamed Tributary. It was also noted that small populations of the invasive species were appearing on the left bank of the Unnamed Tributary and along portions of Snow Creek. While the current infestation is not severe, Japanese stilt grass is known to be an aggressive plant and prolific seed producer and will likely expand rapidly throughout the project site. As with other invasive species, eradication is far less expensive and more successful if conducted at early stages, before the plant is allowed to take over a large area. Therefore, eradication of the Japanese stilt grass is recommended.

The Snow Creek Stream Restoration Project is in overall very good condition. There were very few problem areas, and none that require immediate attention or repair. The majority of the problem areas are related to scour behind the cross vane arms. There are also a few areas where beaver activity may compromise structure integrity. Several areas of significant aggradation were observed, primarily in places where the channel appeared excessively wide and was not able to transport the sediment load adequately. In the upstream portion of Reach 1, the bed material was exceedingly soft, so that the survey

rod (as well as survey personnel) would sink almost three feet deep into the channel bed. It was unclear if this was due to recent aggradation or unconsolidated bed material from the new stream location.

In general this project has a notable lack of bank erosion, attributable to extremely low bank angles and well established streamside vegetation. Pool development is excellent throughout the project reach. However, riffle development is only fair to poor. Many of the designed riffles have transitioned into short runs, possibly due to problems with the meander wavelength to bankfull width ratio. The meander wavelength was observed to be short for the bankfull width, and cross vanes are located close to one another. The straight reaches are not long enough to form good riffles, and the close proximity of the structures is promoting pool development.

#### 2.0 PROJECT BACKGROUND

#### 2.1 **PROJECT OBJECTIVES**

The objectives of the Snow Creek Stream Restoration per EcoLogic's Stream Restoration Design Report (EcoLogic 2002) were to:

- 1. Improve water quality by reducing the sediment load generated by eroding banks and by restoring a riparian buffer;
- 2. Reestablish stable channel dimension, pattern, and profile;
- 3. Restore a functioning floodplain;
- 4. Enhance aquatic and terrestrial habitat in the stream corridor;
- 5. Provide a stable ford across the main channel for tractor access;
- 6. Provide two pedestrian bridges across the main channel for access to the temple property and agricultural fields, and
- 7. Enhance habitat in the main channel and tributary for small-anthered bittercress (*Cardamine micranthera*), a federally endangered plant that occurs in the Snow Creek channel.

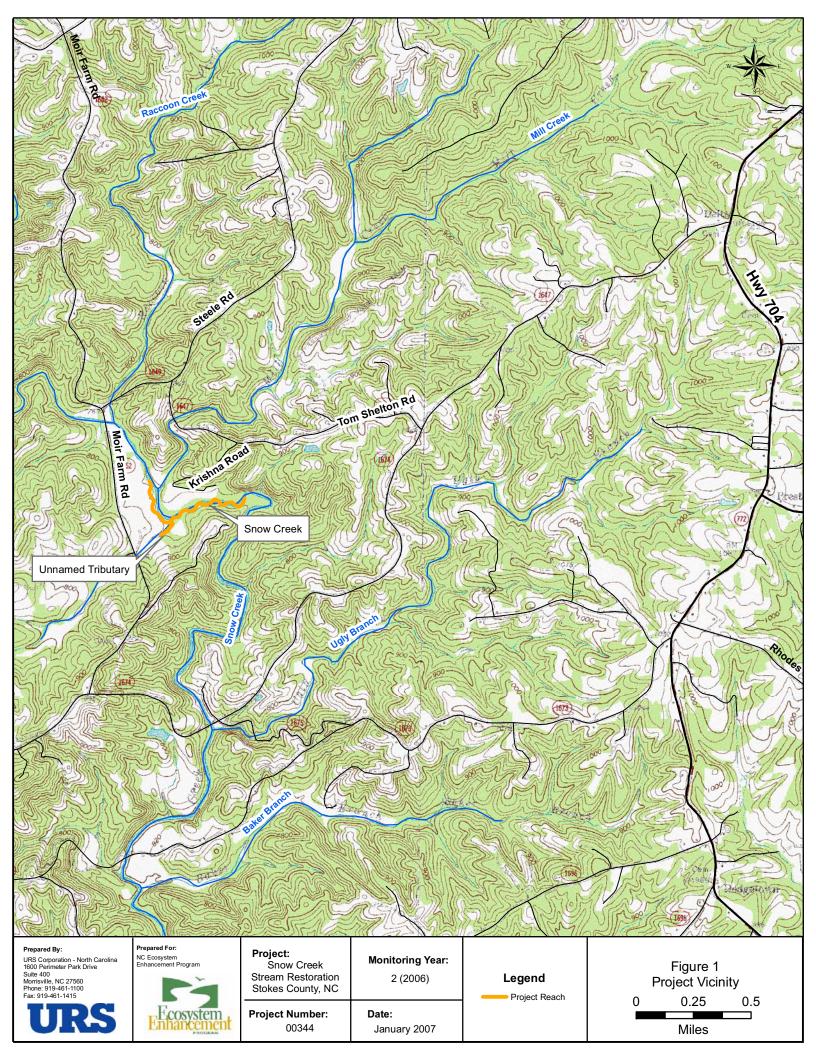
#### 2.2 PROJECT STRUCTURE, RESTORATION TYPE, AND APPROACH

The original condition of Snow Creek included a thin row of mature trees at the top of the banks and very steep, tall banks. Snow Creek was straightened by previous landowners to optimize the floodplain for use as agricultural fields and pastures. In addition, the previous landowners operated a stone quarry on the property, which was accessed by a road crossing over a culvert in Snow Creek. The combination of the straightening and the undersized culverts accelerated entrenchment of the channel until it reached bedrock. Six agricultural landowners have participated in the Snow Creek Stream Restoration project.

Prior to restoration, the main channel of Snow Creek began as a straight south flowing channel. After a sharp ninety degree bend, the channel turned and flowed to the east. Since much of the riparian buffer had been removed to facilitate channel straightening and to provide more land area, the banks of the channel were actively eroding, allowing for lateral movement of the stream. At the time restoration took place, bank heights were nearing eight feet.

The pre-restoration stream length was 3,310 linear feet of Snow Creek and approximately 700 feet of an unnamed tributary. Based on the Rosgen stream classification system, Snow Creek was an entrenched C4/1, while the unnamed tributary was a F4 stream type.

The morphological restoration included significant increases in belt width accomplished through the construction of new meander bends. Bankfull benches and with gently sloping transitions between the channel bottom and top of bank, rock vanes, root wads and coir matting to provide bank protection. Cross vanes provide grade control and pool development. Riparian corridor restoration included preservation of as many mature trees as possible, construction of two crossing fords, installation of native herbs and woody plants in the easement area and fencing out the agricultural animals.

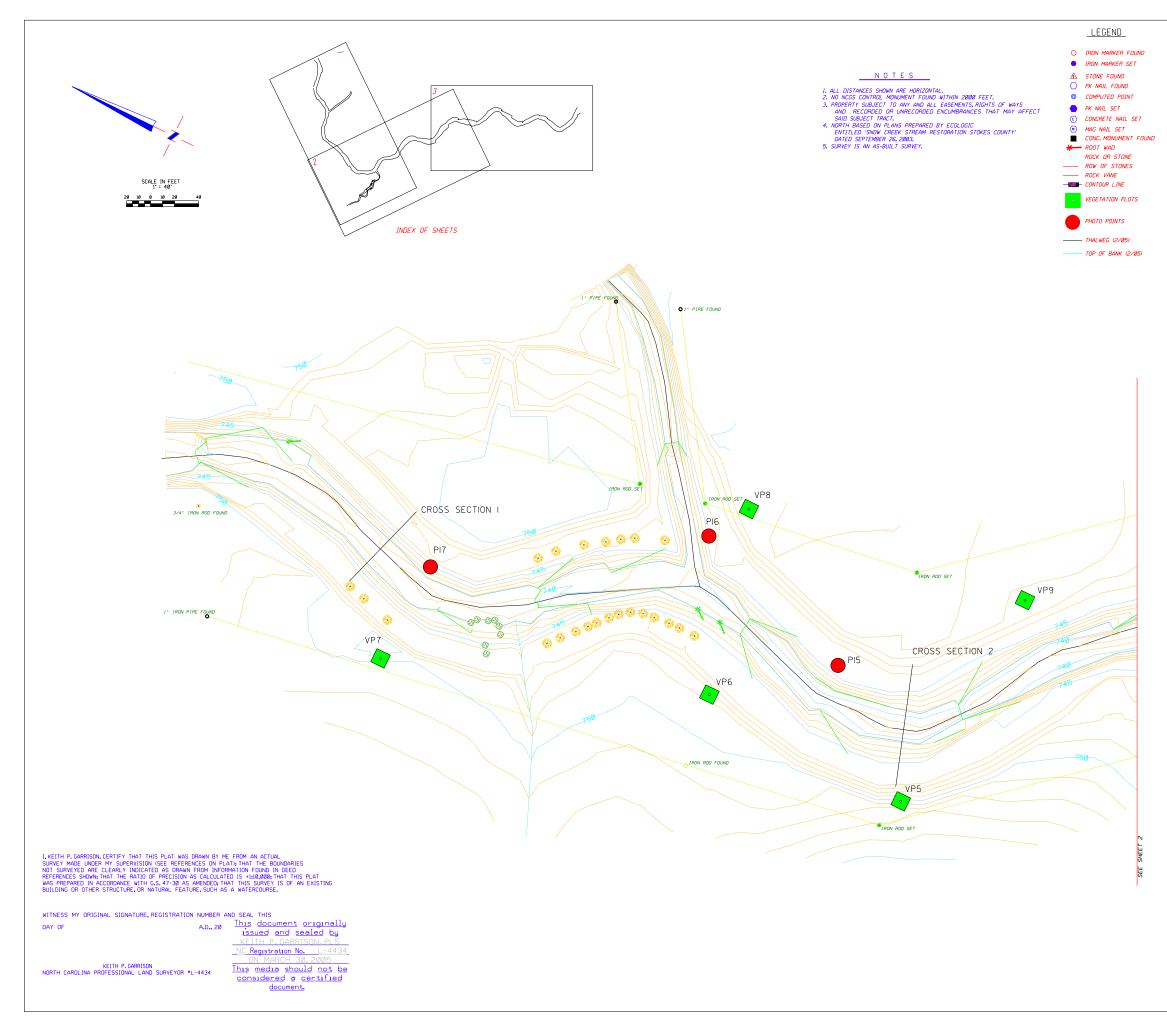

#### 2.3 LOCATION AND SETTING

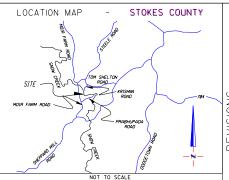
Snow Creek is located in the Upper Dan River Watershed of the Upper Roanoke River Basin in northcentral Stokes County. The project reach is located in USGS 8-digit catalog number 03040102-Snow Creek, NC. The NCDWQ classification of the watershed is 0313 Roanoke River Basin, Snow Creek sections 22-20-(0.5) and 22-20-(5.5).

The headwaters originate east of the town of Lawsonville, NC, which is just south of the Virginia-North Carolina border. The site's watershed is approximately 28 square miles, and consists primarily of woodland and agriculture. The majority of the upper watershed landscape is cultivated tobacco fields and includes some of the largest and oldest farms in Stokes County.

To reach the site from Raleigh, take I-40 west to exit 210 (NC-68 North) to High Point/Piedmont Triad International Airport. Turn left onto US-158. Continue on Belews Creek Road. Continue on NC-65. Turn right at US-311. Continue on NC-89, then turn right onto Shepherd Mill Road (SR 1674) and bear left onto Moir Farm Road (SR 1652).

Access to the upstream portion of the site is obtained from Moir Farm Road, northwest of its intersection with Sheppard Mill Road. The project reach begins behind the large white barn on Moir Farm Road. The project reach flows south, then east. The lower portion is accessed from the end of Prahbupada Road. The eastern portion of the project reach is accessed from Krishna Road (Figure 1).

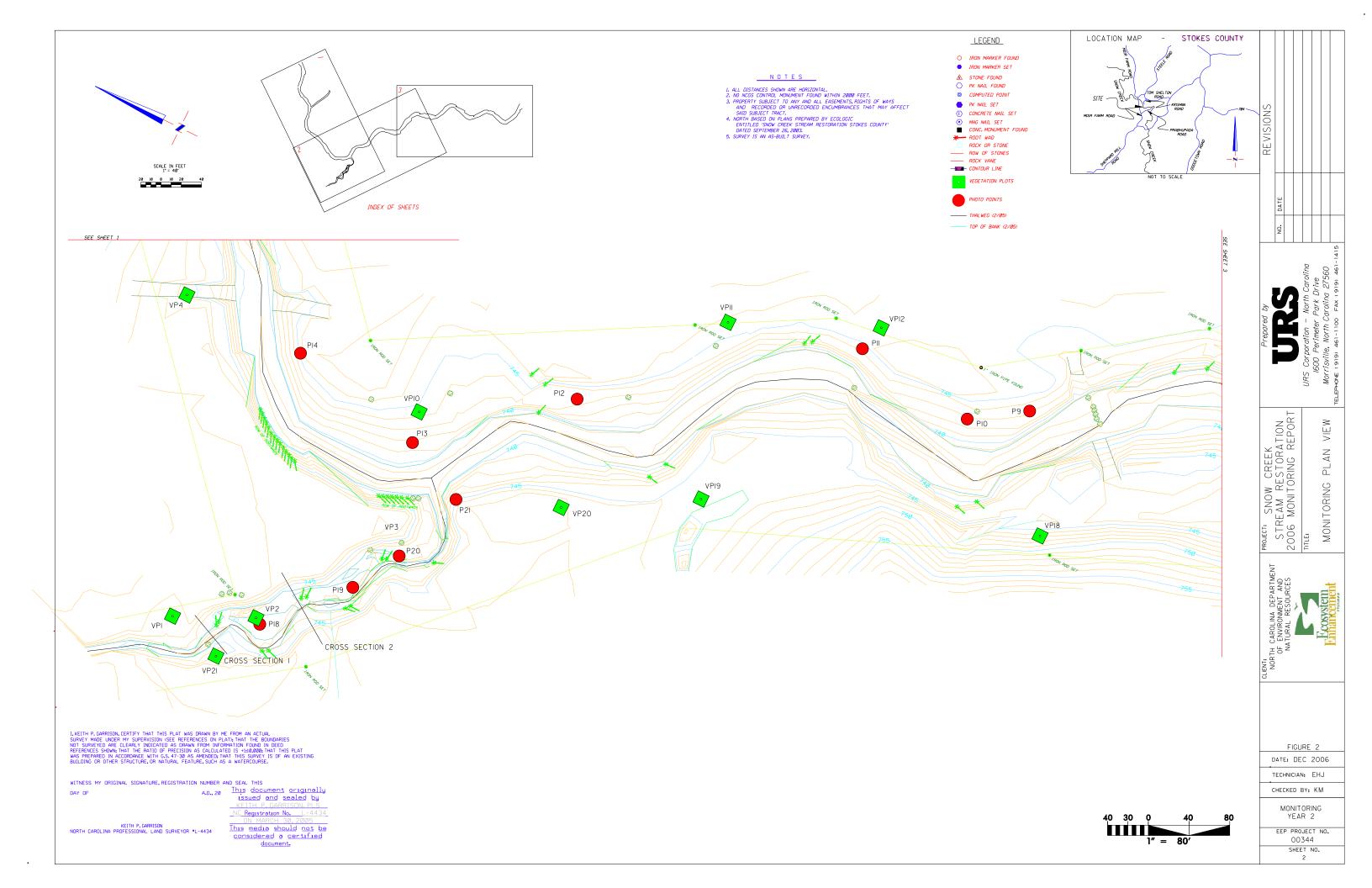


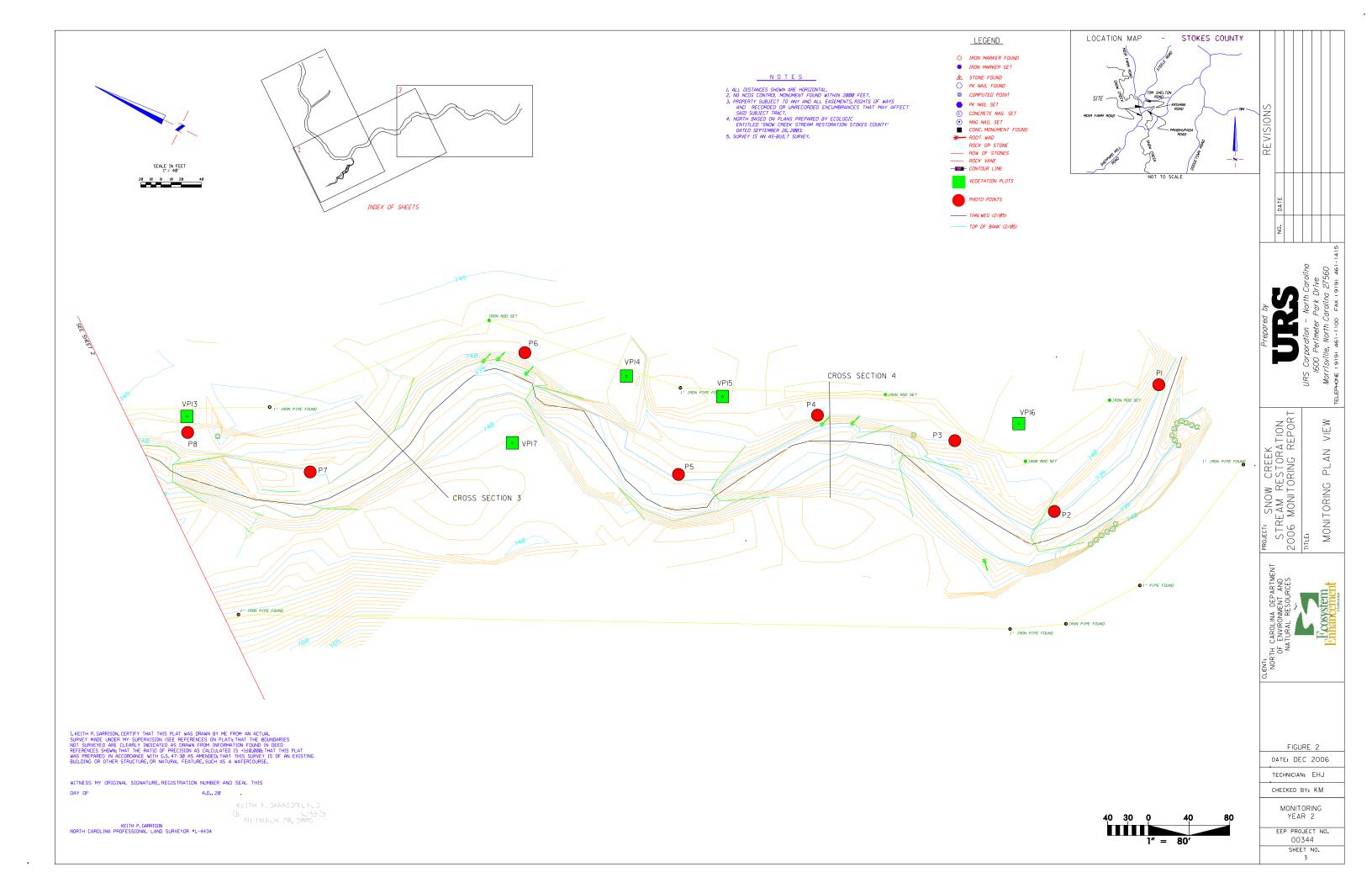


#### 2.4 PROJECT HISTORY AND BACKGROUND

The tributary to Snow Creek was identified by inventory biologists as a restoration potential project in July 1998. This information was given to representatives of EEP during a field tour of potential restoration sites led by EcoLogic staff in Stokes County in June of 2001. The existing condition survey occurred in late May 2002 at which time a Federally Endangered plant species, small-anthered bittercress (*Cardamine micranthera*) was found. Due to this discovery, a Biological Assessment was required with the U.S. Fish and Wildlife Service (USFWS), which started in June 2002. In September 2002, the final Biological Assessment for small-anthered bittercress was submitted to USFWS. In July 2004, construction began and was completed early January 2005. In January-March 2005, live stakes and bare root trees were installed. A heavy rainfall occurred two weeks after construction and caused some damage that required repair, which was accomplished in April 2005. The as-built survey was conducted in February 2005. The as-built morphological survey, installation of reference cross sections, and implementation of vegetation monitoring plots started in July 2005.

| Table I. Project Restoration Components      Snow Creek      EEP Project Number 00344 |                  |                    |              |                   |                      |                      |                   |                                                       |  |
|---------------------------------------------------------------------------------------|------------------|--------------------|--------------|-------------------|----------------------|----------------------|-------------------|-------------------------------------------------------|--|
| Project<br>Segment or<br>Reach ID                                                     | Existing<br>Feet | Mitigation<br>Type | Approach     | Linear<br>Footage | Mitigation<br>Ratio* | Mitigation<br>Units* | Stationing        | Comment                                               |  |
| Snow Creek –                                                                          |                  | R                  | PII          | 1,200             |                      |                      | 0+00 to           | Portion of reach is                                   |  |
| Reach 1                                                                               | 3,310            |                    |              |                   |                      |                      | 12+00             | new channel                                           |  |
| Snow Creek –<br>Reach 2                                                               |                  | R                  | PII          | 2,200             |                      |                      | 12+00 to<br>35+59 | Modify profile,<br>dimension, pattern                 |  |
| UT to Snow<br>Creek                                                                   | 1,355            | R                  | PII          | 450               |                      |                      | 0+00 to<br>4+50   | New pattern,<br>profile, dimension,<br>and structures |  |
| UT to Snow<br>Creek                                                                   |                  | E                  | EI           | 855               |                      |                      |                   | Cattle exclusion<br>and easement                      |  |
| * Mitigation Ration                                                                   | os and Units     | were not pro       | vided in pro | evious repo       | orts.                |                      |                   | ·                                                     |  |
| R= Restoration                                                                        |                  | P1 = P1            | iority I     | Ē                 | I= Enhar             | ncement              | I PII=            | Priority II                                           |  |
| EII= Enhancement II PIII= Priority III S= Stabilization SS= Stream Bank               |                  |                    |              |                   |                      |                      |                   |                                                       |  |

SS= Stream Bank Stabilization




| Photo Points |          |         | Veg Plots |          |         |
|--------------|----------|---------|-----------|----------|---------|
| ID           | Northing | Easting | ID        | Northing | Easting |
| 1            | 987106   | 1665046 | 1         | 986400.3 | 1663186 |
| 2            | 986990.9 | 1664930 | 2         | 986435.1 | 1663280 |
| 3            | 987071.6 | 1664833 | 3         | 986561.4 | 1663373 |
| 4            | 987096.2 | 1664703 | 4         | 986695   | 1663101 |
| 5            | 987039.3 | 1664582 | 5         | 986881.3 | 1662913 |
| 6            | 987164.4 | 1664419 | 6         | 987084.5 | 1662935 |
| 7            | 987043.1 | 1664212 | 7         | 987281   | 1662828 |
| 8            | 987085.2 | 1664071 | 8         | 987099.7 | 1663035 |
| 9            | 986935.1 | 1663889 | 9         | 986861.7 | 1663116 |
| 10           | 986889.5 | 1663835 | 10        | 986674.2 | 1663331 |
| 11           | 986925   | 1663712 | 11        | 986908.3 | 1663590 |
| 12           | 986756.8 | 1663472 | 12        | 986950.4 | 1663730 |
| 13           | 986642.6 | 1663354 | 13        | 987104.2 | 1664071 |
| 14           | 986665.7 | 1663210 | 14        | 987135.6 | 1664514 |
| 15           | 986982.5 | 1662972 | 15        | 987109.8 | 1664612 |
| 16           | 987115.6 | 1663015 | 16        | 987063.2 | 1664886 |
| 17           | 987291.1 | 1662893 | 17        | 987074.4 | 1664386 |
| 18           | 986431.9 | 1663286 | 18        | 986851.6 | 1663921 |
| 19           | 986490.8 | 1663356 | 19        | 986747.7 | 1663620 |
| 20           | 986553.4 | 1663394 | 20        | 986688.8 | 1663528 |
| 21           | 986623.6 | 1663401 | 21        | 986382.9 | 1663269 |









| Table II. Project Activity and Reporting History         Snow Creek         EEP Project Number 00344 |                         |                                |                                     |  |  |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|-------------------------------------|--|--|--|--|
| Activity or Report                                                                                   | Scheduled<br>Completion | Data<br>Collection<br>Complete | Actual<br>Completion or<br>Delivery |  |  |  |  |
| Restoration Plan                                                                                     | Unknown                 | Unknown                        | September 2002                      |  |  |  |  |
| Final Design 90%                                                                                     | Unknown                 | Unknown                        | Unknown                             |  |  |  |  |
| Construction                                                                                         | Unknown                 | Unknown                        | January 2005                        |  |  |  |  |
| Permanent seed mix applied                                                                           | Unknown                 | Unknown                        | July 2004 –<br>January 2005         |  |  |  |  |
| Live stakes and woody plants                                                                         | Unknown                 | Unknown                        | January 2005 –<br>March 2005        |  |  |  |  |
| Storm Damage Repairs                                                                                 | Unknown                 | Unknown                        | April 2005                          |  |  |  |  |
| Final Walk Through                                                                                   | Unknown                 | Unknown                        | July 2005                           |  |  |  |  |
| As-Built Report                                                                                      | Unknown                 | Unknown                        | December 2005                       |  |  |  |  |
| Warranty Repairs                                                                                     | 2005                    | Unknown                        | 2005                                |  |  |  |  |
| Year 1 Monitoring                                                                                    | 2005                    | Unknown                        | April 2006                          |  |  |  |  |
| Year 2 Monitoring                                                                                    | 2006                    | October 2006                   | December 2006                       |  |  |  |  |
| Year 3 Monitoring                                                                                    | 2007                    |                                |                                     |  |  |  |  |
| Year 4 Monitoring                                                                                    | 2008                    |                                |                                     |  |  |  |  |
| Year 5 Monitoring                                                                                    | 2009                    |                                |                                     |  |  |  |  |
| Year + Monitoring                                                                                    | Not Scheduled           |                                |                                     |  |  |  |  |

| Table III. Project Contact Table<br>Snow Creek |                                 |  |  |  |  |  |
|------------------------------------------------|---------------------------------|--|--|--|--|--|
| EEP Project Number 00344                       |                                 |  |  |  |  |  |
| Designer                                       | EcoLogic Associates P.C.        |  |  |  |  |  |
|                                                | 4321-A South Elm-Eugene Street  |  |  |  |  |  |
|                                                | Greensboro, NC 27406            |  |  |  |  |  |
| Primary project design POC                     | Ken Bridle 336-355-8108         |  |  |  |  |  |
| Construction Contractor                        | Shamrock Environmental          |  |  |  |  |  |
|                                                | PO Box 14987                    |  |  |  |  |  |
|                                                | Greensboro, NC 27415            |  |  |  |  |  |
| Construction contractor POC                    | Bill Wright 336-375-1989        |  |  |  |  |  |
| Planting Contractor                            | Wheat Swamp Landscaping         |  |  |  |  |  |
|                                                | 4675 Ben Dail Road              |  |  |  |  |  |
|                                                | LaGrange, NC 28551-8038         |  |  |  |  |  |
| Planting contractor POC                        | Charles Hughes 252-566-5030     |  |  |  |  |  |
| Seeding Contractor                             | Shamrock Environmental          |  |  |  |  |  |
|                                                | PO Box 14987                    |  |  |  |  |  |
|                                                | Greensboro, NC 27415            |  |  |  |  |  |
| Seeding contractor POC                         | Bill Wright 336-375-1989        |  |  |  |  |  |
| Seed Mix Sources                               | Earnst Seed/Monitor Roller Mill |  |  |  |  |  |
|                                                | 109 E 4 <sup>th</sup> Street    |  |  |  |  |  |
|                                                | Walnut Cove, NC 27052           |  |  |  |  |  |
|                                                | 336-591-4126                    |  |  |  |  |  |

| Nursery Stock Suppliers             | Wheat Swamp Landscaping              |
|-------------------------------------|--------------------------------------|
|                                     | 4675 Ben Dail Road                   |
|                                     | LaGrange, NC 28551-8038              |
|                                     | 252-566-5030                         |
| Monitoring Performers – 2005        | EcoLogic Associates P.C.             |
|                                     | 4321-A South Elm-Eugene Street       |
|                                     | Greensboro, NC 27406                 |
| Monitoring POC – Ken Bridle         | 336-335-1108                         |
| Monitoring Performers – 2006        | URS Corporation – North Carolina     |
|                                     | 1600 Perimeter Park Drive, Suite 400 |
|                                     | Morrisville, NC 27560                |
| Monitoring POC – Kathleen McKeithan | 919-461-1597                         |

| Table IV. Project Background TableSnow Creek     |                               |  |  |  |  |  |
|--------------------------------------------------|-------------------------------|--|--|--|--|--|
| EEP Project Number 00344                         |                               |  |  |  |  |  |
| Project County                                   | Stokes                        |  |  |  |  |  |
| Drainage Area: Snow Creek                        | 28 square miles               |  |  |  |  |  |
| Unnamed Tributary                                | 0.9 square miles              |  |  |  |  |  |
| Drainage impervious cover estimate (%)           | 1% or less                    |  |  |  |  |  |
| Stream Order: Snow Creek                         | 4 <sup>th</sup> order         |  |  |  |  |  |
| Unnamed Tributary                                | 2 <sup>nd</sup> order         |  |  |  |  |  |
| Physiographic Region                             | Piedmont                      |  |  |  |  |  |
| Ecoregion                                        | Northern Inner Piedmont (45e) |  |  |  |  |  |
| Rosgen Classification of As-Built                | C4                            |  |  |  |  |  |
| Dominant soil types                              | Toccoa and Riverview          |  |  |  |  |  |
| Reference site ID                                | Long Creek in VA              |  |  |  |  |  |
| USGS HUC for Project                             | 03010103 – Project            |  |  |  |  |  |
| NCDWQ Sub-basin for Project                      | ROA01 22-20 – Project         |  |  |  |  |  |
| NCDWQ classification for Project                 | C – Project                   |  |  |  |  |  |
| Any portion of any project segment 303d listed?  | No                            |  |  |  |  |  |
| Any portion of any project segment upstream of a | No                            |  |  |  |  |  |
| 303d listed segment?                             |                               |  |  |  |  |  |
| Reasons for 303d listing or stressor             | NA                            |  |  |  |  |  |
| % of project easement fenced                     | 100                           |  |  |  |  |  |

## 2.5 MONITORING PLAN VIEW

See Monitoring Plan View (Figure 2).

#### 3.0 PROJECT CONDITION AND MONITORING RESULTS

#### 3.1 VEGETATION ASSESSMENT

#### 3.1.1 Vegetative Problem Areas

Vegetation survival at the site is excellent; therefore, few Vegetative Problem Areas have been identified. During the 2005 monitoring period, EcoLogic identified six problem areas on Snow Creek, and two on the Unnamed Tributary. Vegetative Problem Area data tables are located in Appendix A-I. Four of the six along Snow Creek have naturally improved as vegetation has filled in most of the bare areas. Two problem areas remain on Snow Creek (Table A6a). Two problem areas were identified on the Unnamed Tributary in 2005. 2006 monitoring indicated that both areas have stabilized.

The 2006 monitoring revealed one new problem area along the Unnamed Tributary (Table A6b). The presence of Japanese stilt grass (*Microstegium vimineum*) poses a concern at the site. During 2006 monitoring, it was observed along the entire right bank of the Unnamed Tributary. It was also noted that small populations of the invasive species were appearing on the left bank of the Unnamed Tributary and along portions of Snow Creek. While the current infestation is not severe, Japanese stilt grass is known to be an aggressive plant and prolific seed producer and will likely expand rapidly throughout the project site. As with other invasive species, eradication is far less expensive and more successful if conducted at early stages, before the plant is allowed to take over a large area. Therefore, eradication of the Japanese stilt grass is recommended. Vegetative Problem Area Photos are located in Appendix A-II.

#### 3.1.2 Vegetative Problem Areas Plan View

The Vegetative Problem Areas Plan View is located in Appendix A-III.

#### 3.2 STREAM ASSESSMENT

#### 3.2.1 Procedural Items

#### 3.2.1.1 Morphometric Criteria

Dimension and profile were sampled at a rate as per the USACE Stream Mitigation Guidelines (USACE 2003) and the 2005 Monitoring Report (EcoLogic 2006) as follows:

**Dimension:** Four cross sections are located on Snow Creek for a total of three riffles and one pool. Two cross sections, a riffle and a pool, are located on the Unnamed Tributary. The cross sections are to include points at all breaks in slope.

**Profile:** The longitudinal survey includes 4,759 linear feet of Snow Creek (1,200 of Reach 1 and 3,559 of Reach 2), and 454 linear feet of the unnamed tributary, for a total survey length of 5,213 linear feet. Measurements include thalweg, water surface, bankfull, and top of low bank.

#### 3.2.1.2 Hydrologic Criteria

No crest gages are installed at this site to document bankfull events. Therefore, potential occurrence was extrapolated based on USGS stream gage discharge data for the Little Yadkin River at Dalton, NC (USGS 2006). The USGS gage plot is shown below (Figure 4). The gage is located about 25 miles from the project site and has a drainage area of 43 square miles. An estimate of the number of bankfull events in 2006 was made by comparing the stream discharges from the USGS data in cubic feet per second (cfs) against the bankfull discharge estimated from the drainage area on the Rural Piedmont Regional Curve. According to the regional curve, a bankfull event occurs on a stream with a 43-square mile drainage area when the discharge is about 1,300 cfs. This discharge was exceeded in mid January of 2006, indicating that the Little Yadkin River has had one bankfull event this year (as of November 2, 2006). Snow Creek is in proximity to the Little Yadkin River, and it is likely that the project site also experienced a bankfull event in mid January 2006.

| Table V. Verification of Bankfull Events                          |                       |      |  |  |  |  |  |  |
|-------------------------------------------------------------------|-----------------------|------|--|--|--|--|--|--|
|                                                                   | Snow Creek            |      |  |  |  |  |  |  |
|                                                                   | EEP Project Number 00 | 0344 |  |  |  |  |  |  |
| Date of Data Collection         Date of Occurrence         Method |                       |      |  |  |  |  |  |  |
| 11/2/2006                                                         |                       |      |  |  |  |  |  |  |

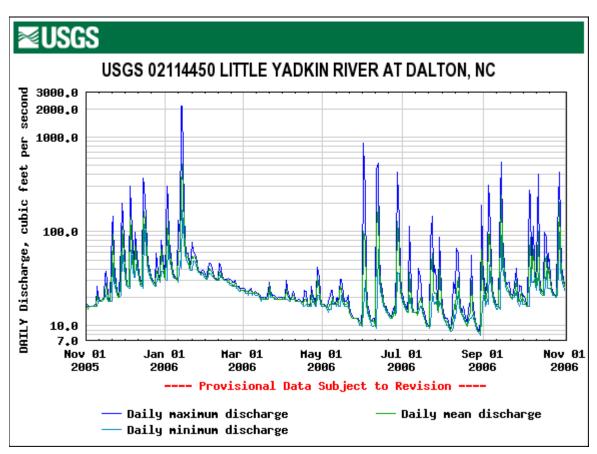



Figure 4. USGS Stream Gage Discharge Data

#### 3.2.1.3 Bank Stability Assessments

A detailed BEHI and NBS assessment was not required for the Big Warrior Creek Stream Restoration site during this monitoring year. According to the 2006 Monitoring Guidelines (EEP 2006), an assessment is required during year 5, post construction only.

#### 3.2.2 Stream Problem Areas Plan View

Overall, the Snow Creek Stream Restoration Project is in very good condition. There were very few problem areas and none that require immediate attention or repair. During the 2005 monitoring period, EcoLogic identified 14 problem areas on Snow Creek, and seven on the Unnamed Tributary. Stream Problem Area data tables are located in Appendix B-II. On Snow Creek nine of the previous problem areas have been repaired or have naturally stabilized; however, five of them still exist. In addition, three new problem areas were identified during 2006 monitoring (Table B1a). On the Unnamed Tributary, six of the seven problem areas have been repaired or have stabilized, and one still exists. Two new problem areas were identified in 2006 (Table B1b).

The majority of the problem areas are related to scour behind the cross vane arms. There are also a few areas where beaver activity may compromise structure integrity. Several areas of significant aggradation were observed, primarily in places where the channel appeared excessively wide and was not able to transport the sediment load adequately. In the upstream portion of Reach 1, the bed material was exceedingly soft, so that the survey rod (as well as survey personnel) would sink almost three feet deep into the channel bed. It was unclear if this was due to recent aggradation or unconsolidated bed material from the new stream location.

The Stream Problem Areas Plan View is located in Appendix B-I. Stream Problem Areas Photos are located in Appendix B-III.

#### 3.2.3 Fixed Photo Station Photos

Fixed Photo Station Photos are Located in Appendix B-III.

#### 3.2.4 Stability Assessment

| Table VIa. Categorical Stream Feature Visual Stability Assessment – Snow Creek |                                            |             |              |     |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------|-------------|--------------|-----|--|--|--|--|--|--|
| Snow Creek                                                                     |                                            |             |              |     |  |  |  |  |  |  |
|                                                                                |                                            | EEP Project | t Number 003 | 344 |  |  |  |  |  |  |
| Feature                                                                        | FeatureInitial*MY-01**MY-02MY-03MY-04MY-05 |             |              |     |  |  |  |  |  |  |
| A. Riffle                                                                      | 100                                        | N/A         | 88           |     |  |  |  |  |  |  |
| B. Pool                                                                        | 100                                        | N/A         | 90           |     |  |  |  |  |  |  |
| C. Thalweg                                                                     | 100                                        | N/A         | 100          |     |  |  |  |  |  |  |
| D. Meanders                                                                    | 100                                        | N/A         | 100          |     |  |  |  |  |  |  |
| E. Bed General                                                                 | 100                                        | N/A         | 98           |     |  |  |  |  |  |  |
| F. Bank Condition                                                              | F. Bank Condition 100 N/A 100              |             |              |     |  |  |  |  |  |  |
| G. Vanes / J Hooks                                                             | 100                                        | N/A         | 91           |     |  |  |  |  |  |  |
| H. Wads and Boulders                                                           | 100                                        | N/A         | 100          |     |  |  |  |  |  |  |

\* It is assumed that all were 100 percent functional upon completion of construction.

\*\*No stability data are presented in the previous report.

| Table VIb. Categorical Stream Feature Visual Stability Assessment – Unnamed Tributary |                               |             |              |     |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-------------------------------|-------------|--------------|-----|--|--|--|--|--|
| Snow Creek                                                                            |                               |             |              |     |  |  |  |  |  |
|                                                                                       |                               | EEP Project | t Number 003 | 344 |  |  |  |  |  |
| FeatureInitial*MY-01**MY-02MY-03MY-04MY-05                                            |                               |             |              |     |  |  |  |  |  |
| A. Riffle                                                                             | 100                           | N/A         | 80           |     |  |  |  |  |  |
| B. Pool                                                                               | 100                           | N/A         | 100          |     |  |  |  |  |  |
| C. Thalweg                                                                            | 100                           | N/A         | 100          |     |  |  |  |  |  |
| D. Meanders                                                                           | 100                           | N/A         | 100          |     |  |  |  |  |  |
| E. Bed General                                                                        | 100                           | N/A         | 95           |     |  |  |  |  |  |
| F. Bank Condition                                                                     | F. Bank Condition 100 N/A 100 |             |              |     |  |  |  |  |  |
| G. Vanes / J Hooks 100 N/A 100                                                        |                               |             |              |     |  |  |  |  |  |
| H. Wads and Boulders                                                                  | 100                           | N/A         | 100          |     |  |  |  |  |  |

\* It is assumed that all were 100 percent functional upon completion of construction.

\*\*No stability data are presented in the previous report.

#### 3.2.5 Quantitative Measures Tables (Morphology and Hydrology)

|                                                  |     |        | Exh  | ibit Ta | ble VIIa             | . Basel | ine Moi | rphology<br>Snow (    |      | ydrauli | c Summ             | ary – Si | now Cr | eek    |      |     |         |     |
|--------------------------------------------------|-----|--------|------|---------|----------------------|---------|---------|-----------------------|------|---------|--------------------|----------|--------|--------|------|-----|---------|-----|
|                                                  |     |        |      |         |                      |         | ЕЕР Р   | Snow<br>roject N      |      | 00344   |                    |          |        |        |      |     |         |     |
| Parameter                                        | USG | S Gage | Data |         | ional Cu<br>Interval |         | Pr      | re-Existi<br>Conditio | ng   |         | ect Refe<br>Stream |          |        | Design |      |     | As-buil | t   |
| Dimension                                        | Min | Max    | Med  | Min     | Max                  | Med     | Min     | Max                   | Med  | Min     | Max                | Med      | Min    | Max    | Med  | Min | Max     | Med |
| BF Width (ft)                                    |     |        | 66   | 26      | 90                   | 50      | 66      | 85                    | 68   | 13.5    | 15.2               | 14.4     | 52     | 68     | 55   | 55  | 70      | 65  |
| Floodprone<br>Width (ft)                         |     |        | 126  |         |                      |         | 120     | 800+                  | 535  | 25      | 125                | 94       | 80     | 800+   | 535  | 100 | 250     | 132 |
| BF Cross<br>Sectional Area<br>(ft <sup>2</sup> ) |     |        | 358  | 100     | 350                  | 175     | 250     | 325                   | 294  | 15.9    | 19                 | 17.6     |        |        | 204  | 186 | 238     | 205 |
| BF Mean<br>Depth (ft)                            |     |        | 5.4  | 2.5     | 6                    | 4       | 4.2     | 5.5                   | 4.3  | 1.1     | 1.4                | 1.2      |        |        | 3.7  | 2.7 | 3.7     | 3.5 |
| BF Max<br>Depth (ft)                             |     |        | 6.4  |         |                      |         | 5.7     | 8.1                   | 6.2  | 1.5     | 1.9                | 1.7      |        |        | 5.4  | 5.1 | 7.5     | 5.5 |
| Width/Depth<br>Ratio                             |     |        | 12.4 |         |                      |         | 12      | 20                    | 15.9 | 9.6     | 13.2               | 11.8     |        |        | 14.9 | 19  | 25      | 22  |
| Bank Height<br>Ratio                             |     |        |      |         |                      |         |         |                       | 1.4  | 1.0     | 1.5                | 1.18     |        |        | 1.0  |     |         | 1.0 |
| Entrenchment<br>Ratio                            |     |        | 1.9  |         |                      |         | 6.6     | 8                     | 7.8  | 6.6     | 7                  | 6.6      |        |        | 9.7  | 1.4 | 1.9     | 1.6 |
| Wetted<br>Perimeter (ft)                         |     |        |      |         |                      |         |         |                       |      |         |                    |          |        |        |      |     |         |     |
| Hydraulic<br>radius (ft)                         |     |        |      |         |                      |         |         |                       |      |         |                    |          |        |        |      |     |         |     |
| Pattern                                          |     |        |      |         |                      |         |         |                       |      |         |                    |          |        |        |      |     |         |     |
| Channel<br>Beltwidth (ft)                        |     |        | 230  |         |                      |         | 75      | 150                   | 120  |         |                    | 42       |        |        | 175  | 100 | 250     | 170 |
| Radius of<br>Curvature (ft)                      |     |        | 155  |         |                      |         | 75      | 125                   | 100  |         |                    | 25       |        |        | 127  | 85  | 168     | 130 |
| Meander<br>Wavelength<br>(ft)                    |     |        | 420  |         |                      |         | 320     | 450                   | 360  |         |                    | 97       |        |        | 385  | 320 | 400     | 360 |
| Meander<br>Width Ratio                           |     |        | 6.3  |         |                      |         |         |                       | 1.75 |         |                    | 2.9      |        |        | 3.2  |     |         | 6.4 |

|                                |     |        | Exh   | ibit Ta | ble VIIa           | a. Basel | ine Mor | pholog<br>Snow        |        | ydraulio | c Summ             | ary – Si | now Cr | eek    |       |       |         |       |
|--------------------------------|-----|--------|-------|---------|--------------------|----------|---------|-----------------------|--------|----------|--------------------|----------|--------|--------|-------|-------|---------|-------|
|                                |     |        |       |         |                    |          | EEP P   | roject N              | lumber | 00344    |                    |          |        |        |       |       |         |       |
| Parameter                      | USG | S Gage | Data  |         | ional C<br>Interva | 1        | (       | ·e-Existi<br>Conditio | n      |          | ect Refe<br>Stream |          |        | Design |       |       | As-buil | t     |
| Dimension                      | Min | Max    | Med   | Min     | Max                | Med      | Min     | Max                   | Med    | Min      | Max                | Med      | Min    | Max    | Med   | Min   | Max     | Med   |
| Profile                        |     |        |       |         |                    |          |         |                       |        |          |                    |          |        |        |       |       |         |       |
| Riffle Length (ft)             |     |        | 95    |         |                    |          | 5       | 65                    | 42     | 20       | 109                | 53       | 25     | 100    | 50    | 27    | 77      | 45    |
| Riffle Slope<br>(ft/ft)        |     |        | 0.004 |         |                    |          |         |                       | 0.020  |          |                    | 0.017    |        |        | 0.005 | 0.002 | 0.056   | 0.005 |
| Pool Length<br>(ft)            |     |        | 200   |         |                    |          | 25      | 145                   | 93     | 10       | 28                 | 18.7     |        |        | 72    | 64    | 262     | 129   |
| Pool Spacing<br>(ft)           |     |        | 444   |         |                    |          | 210     | 630                   | 397    | 50       | 88                 | 69       | 55     | 231    | 155   | 23    | 271     | 149   |
| Substrate                      |     |        |       |         |                    |          |         |                       |        |          |                    |          |        |        |       |       |         |       |
| d50 (mm)                       |     |        | 13.3  |         |                    |          |         |                       | 9.4    |          |                    | 18.4     |        |        | 9.4   |       |         |       |
| d84 (mm)                       |     |        | 69    |         |                    |          |         |                       | 54     |          |                    | 73       |        |        | 54    |       |         |       |
| Additional                     |     |        |       |         |                    |          |         |                       |        |          |                    |          |        |        |       |       |         |       |
| Reach<br>Parameters            |     |        |       |         |                    |          |         |                       |        |          |                    |          |        |        |       |       |         |       |
| Valley Length (ft)             |     |        | 575   |         |                    |          |         |                       | 2200   |          |                    | 895      |        |        | 2200  |       |         | 2200  |
| Channel<br>Length (ft)         |     |        | 745   |         |                    |          |         |                       | 3000   |          |                    | 1074     |        |        | 3400  |       |         | 3404  |
| Sinuosity                      |     |        | 1.3   |         |                    |          |         |                       | 1.4    |          |                    | 1.2      |        |        | 1.5   |       |         | 1.54  |
| Water Surface<br>Slope (ft/ft) |     |        | 0.003 |         |                    |          |         |                       | 0      |          |                    | 0.012    |        |        | 0.002 |       |         | 0.012 |
| BF Slope<br>(ft/ft)            |     |        | 0.003 |         |                    |          |         |                       | 0      |          |                    | 0.012    |        |        | 0.002 |       |         |       |
| Rosgen<br>Classification       |     |        | B4    |         |                    |          |         |                       | C4/1   |          |                    | C4       |        |        | C4/1  |       |         | C4/1  |

|                                                  |     |        | Exhibit | Table V | /IIb. B             | aseline I | Morpho | logy and<br>Snow (   |      | ulic Su | mmary              | – Unna | med Tri | ibutary |     |      |         |       |
|--------------------------------------------------|-----|--------|---------|---------|---------------------|-----------|--------|----------------------|------|---------|--------------------|--------|---------|---------|-----|------|---------|-------|
|                                                  |     |        |         |         |                     |           | ЕЕР Р  | roject N             |      | 00344   |                    |        |         |         |     |      |         |       |
| Parameter                                        | USG | S Gage | Data    |         | jional C<br>Interva |           | Pı     | e-Existi<br>Conditio | ing  | Proj    | ect Refe<br>Stream |        |         | Design  |     |      | As-buil | t     |
| Dimension                                        | Min | Max    | Med     | Min     | Max                 | Med       | Min    | Max                  | Med  | Min     | Max                | Med    | Min     | Max     | Med | Min  | Max     | Med   |
| BF Width (ft)                                    |     |        | 66      | 6.5     | 25                  | 13        | 66     | 85                   | 68   | 13.5    | 15.2               | 14.4   | 9       | 15      | 12  | 7.8  | 13      | 8.5   |
| Floodprone<br>Width (ft)                         |     |        | 126     |         |                     |           | 120    | 800+                 | 535  | 25      | 125                | 94     | 25      | 45      | 30  | 25   | 75      | 35    |
| BF Cross<br>Sectional Area<br>(ft <sup>2</sup> ) |     |        | 358     | 8.5     | 35                  | 17        | 250    | 325                  | 294  | 15.9    | 19                 | 17.6   |         |         | 9.6 | 7.8  | 11      | 8     |
| BF Mean<br>Depth (ft)                            |     |        | 5.4     | 0.8     | 2.2                 | 1.4       | 4.2    | 5.5                  | 4.3  | 1.1     | 1.4                | 1.2    |         |         | 0.8 | 0.5  | 1       | 0.6   |
| BF Max<br>Depth (ft)                             |     |        | 6.4     |         |                     |           | 5.7    | 8.1                  | 6.2  | 1.5     | 1.9                | 1.7    |         |         | 1.2 | 0.8  | 1.2     | 1     |
| Width/Depth<br>Ratio                             |     |        | 12.4    |         |                     |           | 12     | 20                   | 15.9 | 9.6     | 13.2               | 11.8   |         |         | 15  | 10.2 | 19.3    | 13.24 |
| Entrenchment<br>Ratio                            |     |        | 1.9     |         |                     |           | 6.6    | 8                    | 7.8  | 6.6     | 7                  | 6.6    |         |         | 2.5 | 4.5  | 8       | 5.2   |
| Bank Height<br>Ratio                             |     |        |         |         |                     |           | 1.8    | 4.1                  | 2.2  | 1.0     | 1.5                | 1.18   |         |         | 1.0 |      |         | 1.0   |
| Wetted<br>Perimeter (ft)                         |     |        |         |         |                     |           |        |                      |      |         |                    |        |         |         |     |      |         | 8     |
| Hydraulic<br>radius (ft)                         |     |        |         |         |                     |           |        |                      |      |         |                    |        |         |         |     |      |         |       |
| Pattern                                          |     |        |         |         |                     |           |        |                      |      |         |                    |        |         |         |     |      |         |       |
| Channel<br>Beltwidth (ft)                        |     |        | 230     |         |                     |           | 75     | 150                  | 120  |         |                    | 42     | 35      | 55      | 40  | 40   | 65      | 45    |
| Radius of<br>Curvature (ft)                      |     |        | 155     |         |                     |           | 75     | 125                  | 100  |         |                    | 25     | 25      | 35      | 28  | 15   | 35      | 20    |
| Meander<br>Wavelength<br>(ft)                    |     |        | 420     |         |                     |           | 320    | 450                  | 360  |         |                    | 97     | 76      | 94      | 84  | 65   | 95      | 87    |

|                                |     |        | Exhibit | Table V | /IIb. Ba | aseline I | Morpho | logy an  | d Hydra | ulic Su | mmary    | – Unna | med Tr | ibutary |     |       |         |       |
|--------------------------------|-----|--------|---------|---------|----------|-----------|--------|----------|---------|---------|----------|--------|--------|---------|-----|-------|---------|-------|
|                                |     |        |         |         |          |           | -      | Snow     |         |         | -        |        |        | -       |     |       |         |       |
|                                |     |        |         |         |          |           | 1      |          | lumber  |         |          |        |        |         |     |       |         |       |
| Parameter                      | USG | S Gage | Data    |         | ional C  |           |        | e-Existi |         | Proje   | ect Refe |        |        | Design  |     |       | As-buil | t     |
|                                |     | 1      | 1       |         | Interva  |           |        | Conditio | 1       |         | Stream   |        |        | 1       | 1   |       | 1       |       |
| Dimension                      | Min | Max    | Med     | Min     | Max      | Med       | Min    | Max      | Med     | Min     | Max      | Med    | Min    | Max     | Med | Min   | Max     | Med   |
| Meander                        |     |        | 6.3     |         |          |           |        |          | 1.75    |         |          | 2.9    |        |         | 7   |       |         | 10.8  |
| Width Ratio                    |     |        |         |         |          |           |        |          |         |         |          |        |        |         |     |       |         |       |
| Profile                        |     |        | 95      |         |          |           | 5      | (5       | 42      | 20      | 109      | 53     | 12     | 25      | 10  | 0     | 22      | 16    |
| Riffle Length<br>(ft)          |     |        | 95      |         |          |           | 5      | 65       |         | 20      | 109      |        | 12     | 25      | 18  | 8     | 22      | 16    |
| Riffle Slope<br>(ft/ft)        |     |        | 0       |         |          |           |        |          | 0.020   |         |          | 0.017  |        |         | 0   | 0.015 | 0.040   | 0.030 |
| Pool Length (ft)               |     |        | 200     |         |          |           | 25     | 145      | 93      | 10      | 28       | 18.7   |        |         | 16  | 9.2   | 38.1    | 17    |
| Pool Spacing<br>(ft)           |     |        | 444     |         |          |           | 210    | 630      | 397     | 50      | 88       | 69     | 35     | 65      | 52  | 12    | 68      | 42    |
| Substrate                      |     |        |         |         |          |           |        |          |         |         |          |        |        |         |     |       |         |       |
| d50 (mm)                       |     |        | 13.3    |         |          |           |        |          | 9.4     |         |          | 18.4   |        |         | 11  |       |         | 1.6   |
| d84 (mm)                       |     |        | 69      |         |          |           |        |          | 54      |         |          | 73     |        |         | 68  |       |         | 6.6   |
| Additional                     |     |        |         |         |          |           |        |          |         |         |          |        |        |         |     |       |         |       |
| Reach<br>Parameters            |     |        |         |         |          |           |        |          |         |         |          |        |        |         |     |       |         |       |
| Valley Length<br>(ft)          |     |        | 575     |         |          |           |        |          | 382     |         |          | 895    |        |         | 382 |       |         | 382   |
| Channel<br>Length (ft)         |     |        | 745     |         |          |           |        |          | 700     |         |          | 1074   |        |         | 450 |       |         | 454   |
| Sinuosity                      |     |        | 1.3     |         |          |           |        |          | 1.8     |         |          | 1.2    |        |         | 1.2 |       |         | 1.2   |
| Water Surface<br>Slope (ft/ft) |     |        | 0.003   |         |          |           |        |          | 0.002   |         |          | 0.012  |        |         | 0   |       |         | 0.010 |
| BF Slope<br>(ft/ft)            |     |        | 0.003   |         |          |           |        |          | 0.002   |         |          | 0.012  |        |         | 0   |       |         | 0.010 |
| Rosgen                         |     |        | B4      |         |          |           |        |          | C5      |         |          | C4     |        |         | C4  |       |         | C4    |

| Exhit                                      | oit Table |       | Sn<br>EEP | ow Cre<br>Snov<br>Project | ek – Ro<br>v Creel<br>Numb | each 1<br>K | c Monito<br>4 | _     |     | -               |     |     |
|--------------------------------------------|-----------|-------|-----------|---------------------------|----------------------------|-------------|---------------|-------|-----|-----------------|-----|-----|
| Parameter                                  |           | (     |           | Section<br>iffle          | 1                          |             |               |       |     | Section<br>'ool | 2   |     |
| Dimension                                  | MY1       | MY2   | MY3       | MY4                       | MY5                        | MY+         | MY1           | MY2   | MY3 | MY4             | MY5 | HY+ |
| BF Width (ft)                              | 68        | 52.9  |           |                           |                            |             | 75.6          | 61.5  |     |                 |     | 1   |
| Floodprone Width (ft)                      | 132       | >133  |           |                           |                            |             | 151           | >132  |     |                 |     |     |
| BF Cross Sectional Area (ft <sup>2</sup> ) | 186       | 169.9 |           |                           |                            |             | 249           | 237.2 |     |                 |     |     |
| BF Mean Depth                              | 2.7       | 3.2   |           |                           |                            |             | 3.3           | 3.9   |     |                 |     |     |
| BF Max Depth                               | 5.1       | 5.1   |           |                           |                            |             | 7.5           | 8.1   |     |                 |     |     |
| Width/Depth Ratio                          | 25        | 16.5  |           |                           |                            |             | 22.9          | 15.9  |     |                 |     |     |
| Entrenchment Ratio                         | 1.9       | >2.5  |           |                           |                            |             | 2             | >2.1  |     |                 |     |     |
| Bank Height Ratio                          |           | 1.0   |           |                           |                            |             |               | 1.0   |     |                 |     |     |
| Wetted Perimeter (ft)                      | 69.7      | 55.8  |           |                           |                            |             | 77.6          | 64.1  |     |                 |     |     |
| Hydraulic radius (ft)                      | 2.7       | 3.0   |           |                           |                            |             | 3.2           | 3.7   |     |                 |     |     |
| Substrate                                  |           |       |           |                           |                            |             |               |       |     |                 |     |     |
| d50 (mm)                                   | 37.6      | 37    |           |                           |                            |             | 4.85          | 37    |     |                 |     |     |
| d84 (mm)                                   | 102.7     | 94    |           |                           |                            |             | 24.2          | 94    |     |                 |     |     |

| Exhit                                      | oit Tabl |       | Sno<br>EEP 1  | ow Cree<br>Snow<br>Project | ek – Re<br>7 Creek<br>Numbe | ach 2 | e Monito<br>4 | _     |     |                |     |     |
|--------------------------------------------|----------|-------|---------------|----------------------------|-----------------------------|-------|---------------|-------|-----|----------------|-----|-----|
| Parameter                                  |          |       | Cross S<br>Ru |                            | ;                           |       |               |       |     | Section<br>un* | 4   |     |
| Dimension                                  | MY1      | MY2   | MY3           | MY4                        | MY5                         | MY+   | MY1           | MY2   | MY3 | MY4            | MY5 | MY+ |
| BF Width (ft)                              | 63       | 46.9  |               |                            |                             | 1     | 67            | 63.3  |     |                |     | 1   |
| Floodprone Width (ft)                      | 107      | >97.7 |               |                            |                             |       | 100           | >98.7 |     |                |     |     |
| BF Cross Sectional Area (ft <sup>2</sup> ) | 205      | 125.9 |               |                            |                             |       | 238           | 238.8 |     |                |     |     |
| BF Mean Depth                              | 3.2      | 2.7   |               |                            |                             |       | 3.5           | 3.8   |     |                |     |     |
| BF Max Depth                               | 4.7      | 4.0   |               |                            |                             |       | 5.6           | 5.6   |     |                |     |     |
| Width/Depth Ratio                          | 19.7     | 17.5  |               |                            |                             |       | 19.2          | 16.8  |     |                |     |     |
| Entrenchment Ratio                         | 1.7      | >2.1  |               |                            |                             |       | 1.48          | >1.6  |     |                |     |     |
| Bank Height Ratio                          |          | 1.0   |               |                            |                             |       |               | 1.0   |     |                |     |     |
| Wetted Perimeter (ft)                      | 65.2     | 48.7  |               |                            |                             |       | 69            | 68.8  |     |                |     |     |
| Hydraulic radius (ft)                      | 3.2      | 2.6   |               |                            |                             |       | 3.5           | 3.5   |     |                |     |     |
| Substrate                                  |          |       |               |                            |                             |       |               |       |     |                |     |     |
| d50 (mm)                                   | 10.4     | 8     |               |                            |                             |       | 12.1          | 21    |     |                |     |     |
| d84 (mm)                                   | 40.4     | 47    |               |                            |                             |       | 36.3          | 56    |     |                |     |     |

\* Cross Sections 3 and 4 were identified as riffles in the Monitoring Year One Report. They have transitioned to runs.

|                                   |        |       | Ext   | nibit Tabl | e VIIIc. N | Aorpholo |          |         |          | oring S | ummary | v – Snow | Creek |     |     |     |                  |     |
|-----------------------------------|--------|-------|-------|------------|------------|----------|----------|---------|----------|---------|--------|----------|-------|-----|-----|-----|------------------|-----|
|                                   |        |       |       |            |            |          |          | ow Cree |          | _       |        |          |       |     |     |     |                  |     |
|                                   |        | 34374 |       |            | N/N/A      | E        | EP Proje | et Num  | oer 0034 | 4       |        |          | 1     |     |     | 1   | <b>N / N</b> / 1 |     |
| Parameter                         | N.4.   | MY1   | 3.6.1 | N.4.       | MY2        |          |          | MY3     | 3.4.1    | N.C.    | MY4    |          |       | MY5 |     |     | MY+              |     |
| Pattern                           | Min    | Max   | Med   | Min        | Max        | Med      | Min      | Max     | Med      | Min     | Max    | Med      | Min   | Max | Med | Min | Max              | Med |
| Channel<br>Beltwidth (ft)         | 100    | 250   | 170   |            |            |          |          |         |          |         |        |          |       |     |     |     |                  |     |
| Radius of<br>Curvature (ft)       | 85     | 168   | 130   |            |            |          |          |         |          |         |        |          |       |     |     |     |                  |     |
| Meander<br>Wavelength (ft)        | 320    | 400   | 360   |            |            |          |          |         |          |         |        |          |       |     |     |     |                  |     |
| Meander Width<br>Ratio            | 4.7    | 5.8   | 6.4   |            |            |          |          |         |          |         |        |          |       |     |     |     |                  |     |
| Profile                           |        |       |       |            |            |          |          |         |          |         |        |          |       |     |     |     |                  |     |
| Riffle Length (ft)                | 27.7   | 77.1  | 45.4  | 15.0       | 110.0      | 63       |          |         |          |         |        |          |       |     |     |     |                  |     |
| Riffle Slope<br>(ft/ft)           | 0.0056 | 0.015 | 0.010 | 0.0004     | 0.009      | 0.004    |          |         |          |         |        |          |       |     |     |     |                  |     |
| Pool Length (ft)                  | 64.7   | 262   | 129   | 27.0       | 239.0      | 65.0     |          |         |          |         |        |          |       |     |     |     |                  |     |
| Pool Spacing<br>(ft)              | 23     | 271   | 149   | 35         | 287        | 138      |          |         |          |         |        |          |       |     |     |     |                  |     |
| Additional<br>Reach<br>Parameters |        |       |       |            |            |          |          |         |          |         |        |          |       |     |     |     |                  |     |
| Valley Length<br>(ft)             |        |       | 2200  |            |            | 2200     |          |         |          |         |        |          |       |     |     |     |                  |     |
| Channel Length (ft)               |        |       | 3404  |            |            | 3559     |          |         |          |         |        |          |       |     |     |     |                  |     |
| Sinuosity                         |        |       | 1.5   |            |            | 1.6      |          |         |          |         |        |          |       |     |     |     |                  |     |
| Water Surface<br>Slope (ft/ft)    |        |       | 0.002 |            |            | 0.003    |          |         |          |         |        |          |       |     |     |     |                  |     |
| BF Slope (ft/ft)                  |        |       | 0.003 |            |            | 0.002    |          |         |          |         |        |          |       |     |     |     |                  |     |
| Rosgen<br>Classification          |        |       | C     |            |            | C4       |          |         |          |         |        |          |       |     |     |     |                  |     |

| Exhibit Table VI                           | IId. Mo |      | EEP | Snov<br>Project | v Creel<br>Numb |     | -    |      |     |                  |     |     |
|--------------------------------------------|---------|------|-----|-----------------|-----------------|-----|------|------|-----|------------------|-----|-----|
| Parameter                                  |         |      |     | bection<br>bol  | 1               | _   |      |      |     | Section<br>iffle | 2   |     |
| Dimension                                  | MYI     | MY2  | MY3 | MY4             | MY5             | HY+ | MYI  | MY2  | MY3 | MY4              | MY5 | HY+ |
| BF Width (ft)                              | 10.9    | 14.4 |     |                 |                 |     | 7.8  | 12.3 |     |                  |     |     |
| Floodprone Width (ft)                      | 59      | 66.5 |     |                 |                 |     | 41   | 48.3 |     |                  |     |     |
| BF Cross Sectional Area (ft <sup>2</sup> ) | 11      | 15.4 |     |                 |                 |     | 4.7  | 8.1  |     |                  |     |     |
| BF Mean Depth                              | 1       | 1.1  |     |                 |                 |     | 0.6  | 0.7  |     |                  |     |     |
| BF Max Depth                               | 2       | 2.3  |     |                 |                 |     | 1    | 1.8  |     |                  |     |     |
| Width/Depth Ratio                          | 10.8    | 13.5 |     |                 |                 |     | 13.2 | 18.7 |     |                  |     |     |
| Bank Height Ratio                          |         | 1.0  |     |                 |                 |     |      | 1.0  |     |                  |     |     |
| Entrenchment Ratio                         | 5.4     | 4.6  |     |                 |                 |     | 5.2  | 3.9  |     |                  |     |     |
| Wetted Perimeter (ft)                      | 11.8    | 16.1 |     |                 |                 |     | 8.2  | 13.5 |     |                  |     |     |
| Hydraulic radius (ft)                      | 0.9     | 1.0  |     |                 |                 |     | 0.57 | 0.6  |     |                  |     |     |
| Substrate                                  |         |      |     |                 |                 |     |      |      |     |                  |     |     |
| d50 (mm)                                   | 0.56    | 0.43 |     |                 |                 |     | 1.64 | 16   |     |                  |     |     |
| d84 (mm)                                   | 4.0     | 4.9  |     |                 |                 |     | 6.58 | 38   |     |                  |     |     |

|                                   |       |       | Exhib | it Table | VIIIe. N | Aorpholo | ogy and | Hydraul             |       | oring Su | ımmary - | – Unnan | ned Trib | utary |     |     |     |     |
|-----------------------------------|-------|-------|-------|----------|----------|----------|---------|---------------------|-------|----------|----------|---------|----------|-------|-----|-----|-----|-----|
|                                   |       |       |       |          |          |          | ггрі    | Snow (<br>Project N |       | 0244     |          |         |          |       |     |     |     |     |
| Parameter                         |       | MY1   |       |          | MY2      |          | LEF     | MY3                 | umber | 0344     | MY4      |         |          | MY5   |     |     | MY+ |     |
| Pattern                           | Min   | Max   | Med   | Min      | Max      | Med      | Min     | Max                 | Med   | Min      | Max      | Med     | Min      | Max   | Med | Min | Max | Med |
| Channel<br>Beltwidth (ft)         | 40    | 65    | 45    |          |          |          |         |                     |       |          |          |         |          |       |     |     |     |     |
| Radius of<br>Curvature (ft)       | 15    | 35    | 20    |          |          |          |         |                     |       |          |          |         |          |       |     |     |     |     |
| Meander<br>Wavelength (ft)        | 65    | 95    | 87    |          |          |          |         |                     |       |          |          |         |          |       |     |     |     |     |
| Meander Width<br>Ratio            | 5.9   | 8.7   | 10.8  |          |          |          |         |                     |       |          |          |         |          |       |     |     |     |     |
| Profile                           |       |       |       |          |          |          |         |                     |       |          |          |         |          |       |     |     |     |     |
| Riffle Length (ft)                | 6.1   | 12.3  | 8.8   | 11       | 33       | 19       |         |                     |       |          |          |         |          |       |     |     |     |     |
| Riffle Slope<br>(ft/ft)           | 0.015 | 0.043 | 0.031 | 0.008    | 0.028    | 0.014    |         |                     |       |          |          |         |          |       |     |     |     |     |
| Pool Length (ft)                  | 9.2   | 38.1  | 16.9  | 12       | 41       | 22       |         |                     |       |          |          |         |          |       |     |     |     |     |
| Pool Spacing<br>(ft)              | 11.83 | 67.8  | 42.4  | 14       | 74       | 32       |         |                     |       |          |          |         |          |       |     |     |     |     |
| Additional<br>Reach<br>Parameters |       |       |       |          |          |          |         |                     |       |          |          |         |          |       |     |     |     |     |
| Valley Length<br>(ft)             |       |       | 382   |          |          | 382      |         |                     |       |          |          |         |          |       |     |     |     |     |
| Channel Length (ft)               |       |       | 464   |          |          | 454      |         |                     |       |          |          |         |          |       |     |     |     |     |
| Sinuosity                         |       |       | 1.2   |          |          | 1.2      |         |                     |       |          |          |         |          |       |     |     |     |     |
| Water Surface<br>Slope (ft/ft)    |       |       | 0.013 |          |          | 0.014    |         |                     |       |          |          |         |          |       |     |     |     |     |
| BF Slope (ft/ft)                  |       |       | 0.011 |          |          | 0.013    |         |                     |       |          |          |         |          |       |     |     |     |     |
| Rosgen<br>Classification          |       |       | C     |          |          | C5       |         |                     |       |          |          |         |          |       |     |     |     |     |

### 4.0 METHODOLOGY SECTION

All monitoring methodologies follow the most current templates and guidelines provided by EEP. Photographs were taken at high resolution using an Olympus Stylus 4.0 megapixel digital camera. GPS location information was collected using a Trimble Geo XT handheld mapping grade GPS unit. GPS locations were collected on both banks of each cross section and on all four corners of each vegetation plot. Stream and vegetation problem areas were noted in the field on As-Built Plan Sheets. Permanent photo station photographs were taken from locations marked in the Year One Monitoring Report, prepared by EcoLogic Associates.

## 4.1 STREAM METHODOLOGY

The methods used to generate the data in this report are standard fluvial geomorphology techniques as described in *Applied River Morphology* (Rosgen 1996) and related publications from US Forest Service and the interagency Stream Mitigation Guidelines (USACE 2003). URS' field morphology survey was conducted using a Topcon PL-H3C Rotating Laser and the data were analyzed and displayed using the Reference Reach Spreadsheet, Version 4.2L (Mecklenburg 2006). Individual pebble counts were conducted at each cross section. Photographs were taken at each cross section. A photo was taken from the left bank towards the right bank, and from the right bank towards the left bank.

### 4.2 VEGETATION METHODOLOGY

Twenty-three vegetation plots were established by EcoLogic in 2005. The plots are 10-meter by 10-meter in size. These 23 plots were evaluated for Year 1 monitoring in 2005.

According to the new CVS-EEP Protocol for Recording Vegetation (Lee *et al.* 2006), the Snow Creek Stream Restoration Project requires monitoring of 12 vegetation plots. The new CVS-EEP Protocol for Recording Vegetation was used to inventory 12 (3, 5, 7, 8, 10, 11, 13, 15, 16, 17, 18, and 21) of the 23 vegetation plots previously established by EcoLogic.

Ecologic used rebar to mark all four corners of the vegetation plots and the upstream, outside corner was marked with a 4-foot PVC pipe flagged with orange. The remaining three corners were marked with blue flagging. Planted stems were marked with white flagging. A reference photograph was taken from the outside, upstream corner of each plot.

The new protocol was used to inventory the plots for the Year 2 stem counts. All planted stems were marked with white flagging. If flagging from the previous year was present, the old flagging was not removed. New flags were hung adjacent to old flags. Natural regeneration stems were marked with red flagging and recorded. Reference photographs and GPS coordinates were taken at the southwest corner, facing the northeast corner, for each plot.

Due to the large quantity of livestakes present in the vegetation plots, a sampling method was devised for planted stem counts based on the sub-sample methodology described in the CVS-EEP Protocol. The sub-sample method was only used for silky dogwood (*Cornus amomum*) and black willow (*Salix nigra*). Over 200 stems of these species were observed in several vegetation plots.

The sub-sample method consisted of counting all stems within a 1-meter by 10-meter sub-sample area, which is approximately 10 percent of the vegetation plot. The sub-sample area was situated within the main sampling plot so as to represent the overall condition of the main plot. A threshold height was determined for silky dogwoods and black willows within each vegetation plot following a count of all stems within the sub-sample plot. Once the threshold height was determined, stem counts within the main plot did not include silky dogwood or black willow not meeting the threshold criteria. It was assumed that the 10 percent sample captured an approximate number and size of these species. The sub-sample stem count was multiplied by 10. All species other than silky dogwood and black willow were counted according to normal protocol. The threshold value was recorded on the raw data forms.

Vegetation survey data tables are located in Appendix A-I. Vegetation Plot Photos are located in Appendix A-IV.

#### 5.0 **REFERENCES**

Daniels, R.B., Buol, S.W., Kleiss, H.J., and C.A Ditzler. 1999. Soil Systems in North Carolina. North Carolina State University, Soil Science Department. Technical Bulletin 314. January, 1999.

Ecologic Associates, P.C. 2002. Snow Creek Stream Restoration Design Report. Prepared for NC Ecosystem Enhancement Program. September 2002.

Ecologic Associates, P.C. 2006. Snow Creek Stream Restoration 2005 Monitoring Report. Monitoring Year One. Prepared for NC Ecosystem Enhancement Program. April 2006.

Leab, Robert J. 1995. Soil Survey of Stokes County, North Carolina. US Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS).

Mecklenburg, Dan. 2006. The Reference Reach Spreadsheet for Channel Survey Data Management. Version 4.2L. Ohio Department of Natural Resources.

EEP. 2006. Content, Format, and Data Requirements for EEP Monitoring Reports. Version 1.2 (11/16/06). NCDENR, NCEEP. 17pp.

Lee, Michael T., Peek, Robert K., Roberts, Steven D., Wentworth, Thomas R. 2006. CVS-EEP Protocol for Recording Vegetation. Version 4.0. Retrieved October 30, 2006, from <a href="http://www.nceep.net/business/monitoring/veg/datasheets.htm">http://www.nceep.net/business/monitoring/veg/datasheets.htm</a>.

Radford, A.E., Ahles, H.E., and C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. The University of North Carolina Press. Chapel Hill, NC.

Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

USACE, Wilmington District, US Environmental Protection Agency, NC Wildlife Resources Commission, and NC Division of Water Quality. 2003. Stream Mitigation Guidelines. April 2003. 26 pp.

USGS. 2006. Little Yadkin River at Dalton, NC streamflow gage. USGS Real-Time Water Data. Gage 02114450. <u>http://waterdata.usgs.gov</u>.

Appendix A (Click here)

# **APPENDIX** A

# **VEGETATION RAW DATA**

## Table A1. Vegetation Metadata

| Report Prepared By           | Susan Shelingoski                                          |
|------------------------------|------------------------------------------------------------|
| Date Prepared                | 1/18/2007 11:00                                            |
|                              |                                                            |
|                              |                                                            |
| database name                | URS-2006-A.mdb                                             |
| database location            | P:\Jobs3\31825348_Monitoring                               |
|                              |                                                            |
|                              |                                                            |
| DESCRIPTION OF WORKSHEETS    | S IN THIS DOCUMENT                                         |
|                              | This worksheet, which is a summary of                      |
| Metadata                     | the project and the project data.                          |
| Plots                        | List of plots surveyed.                                    |
| Vigor                        | Frequency distribution of vigor classes.                   |
| Minor ha One                 | Frequency distribution of vigor classes                    |
| Vigor by Spp                 | listed by species.<br>List of most frequent damage classes |
|                              | with number of occurrences and                             |
|                              | percent of total stems impacted by                         |
| Damage                       | each.                                                      |
|                              | Damage values tallied by type for each                     |
| Damage by Spp                | species.                                                   |
|                              | Damage values tallied by type for each                     |
| Damage by Plot               | plot.                                                      |
|                              | Count of living stems of each species                      |
|                              | for each plot; dead and missing stems                      |
| Stem Count by Plot and Spp   | are excluded.                                              |
| PROJECT SUMMARY              |                                                            |
| PROJECT SUMMART Project Code | 344                                                        |
| project Name                 | Snow Creek                                                 |
| Description                  | Stream Restoration                                         |
| length (ft)                  |                                                            |
| stream-to-edge width (ft)    |                                                            |
| area (sq m)                  |                                                            |
| Required Plots (calculated)  |                                                            |
| Sampled Plots                | 12                                                         |
|                              |                                                            |

Table A2. Vegetation Vigor by Species

|      | Species                                                 | 4   | 3   | 2  | 1 | 0 | Missing |
|------|---------------------------------------------------------|-----|-----|----|---|---|---------|
|      | EMPTY_MODULE: This module has no species in it, but was |     |     |    |   |   |         |
|      | sampled.                                                |     |     |    |   |   |         |
|      | DONTKNOW: unsure record                                 |     | 2   |    |   |   |         |
|      | Ailanthus altissima                                     |     |     |    |   |   |         |
|      | Alnus serrulata                                         |     | 3   | 3  |   |   |         |
|      | Aronia arbutifolia                                      | 1   | 4   | 1  |   |   |         |
|      | Betula nigra                                            |     |     |    |   |   |         |
|      | Cornus amomum                                           | 51  | 125 | 17 |   |   |         |
|      | Cornus florida                                          | 5   | 11  |    |   |   |         |
|      | Diospyros virginiana                                    |     |     |    |   |   |         |
|      | Nyssa sylvatica                                         | 1   | 5   |    |   |   |         |
|      | Quercus velutina                                        | 1   |     |    |   |   |         |
|      | Rhus glabra                                             |     |     |    |   |   |         |
|      | Salix nigra                                             | 71  | 48  | 7  |   |   |         |
|      | Sambucus canadensis                                     | 2   | 6   | 2  |   |   |         |
|      | Alnus                                                   | 1   |     |    |   |   |         |
|      | Cercis canadensis                                       |     |     | 2  |   |   |         |
|      | Quercus rubra                                           | 1   |     |    |   |   |         |
|      | Liriodendron tulipifera                                 |     |     |    |   |   |         |
|      | Platanus occidentalis                                   | 5   |     |    |   |   |         |
|      | Crataegus                                               | 1   | 4   | 1  |   |   |         |
|      | Prunus                                                  |     |     |    |   |   |         |
|      | Prunus serotina                                         | 1   |     |    |   |   |         |
|      | Acer negundo                                            |     |     |    |   |   |         |
| TOT: | 23                                                      | 141 | 208 | 33 |   |   |         |

Table A3. Vegetation Damage by Species

|                                                         | All<br>Damage | (no     |        |
|---------------------------------------------------------|---------------|---------|--------|
| Species                                                 | Categories    | damage) | Beaver |
| Acer negundo                                            | 3             | 3       |        |
| Ailanthus altissima                                     | 1             | 1       |        |
| Alnus                                                   | 1             | 1       |        |
| Alnus serrulata                                         | 9             | 4       | 5      |
| Aronia arbutifolia                                      | 8             | 8       |        |
| Betula nigra                                            | 6             | 6       |        |
| Cercis canadensis                                       | 2             | 2       |        |
| Cornus amomum                                           | 349           | 349     |        |
| Cornus florida                                          | 16            | 16      |        |
| Crataegus                                               | 6             | 6       |        |
| Diospyros virginiana                                    | 1             | 1       |        |
| DONTKNOW: unsure record                                 | 2             | 2       |        |
| EMPTY_MODULE: This module has no species in it, but was |               |         |        |
| sampled.                                                | 1             | 1       |        |
| Liriodendron tulipifera                                 | 4             | 4       |        |
| Nyssa sylvatica                                         | 9             | 9       |        |

## A-I. VEGETATION SURVEY DATA TABLES

|      | Species               | All<br>Damage<br>Categories | (no<br>damage) | Beaver |
|------|-----------------------|-----------------------------|----------------|--------|
|      | Platanus occidentalis | 15                          | 15             |        |
|      | Prunus                | 2                           | 2              |        |
|      | Prunus serotina       | 6                           | 6              |        |
|      | Quercus rubra         | 2                           | 2              |        |
|      | Quercus velutina      | 1                           | 1              |        |
|      | Rhus glabra           | 6                           | 6              |        |
|      | Salix nigra           | 199                         | 199            |        |
|      | Sambucus canadensis   | 10                          | 10             |        |
| TOT: | 23                    | 659                         | 654            | 5      |

Table A4. Vegetation Damage by Plot

|      | plot        | All<br>Damage<br>Categories | (no<br>damage) | Beaver |
|------|-------------|-----------------------------|----------------|--------|
|      | 344-01-0003 | 79                          | 79             |        |
|      | 344-01-0005 | 16                          | 16             |        |
|      | 344-01-0007 | 35                          | 35             |        |
|      | 344-01-0008 | 42                          | 42             |        |
|      | 344-01-0010 | 25                          | 25             |        |
|      | 344-01-0011 | 122                         | 122            |        |
|      | 344-01-0013 | 72                          | 72             |        |
|      | 344-01-0015 | 24                          | 23             | 1      |
|      | 344-01-0016 | 47                          | 45             | 2      |
|      | 344-01-0017 | 31                          | 29             | 2      |
|      | 344-01-0018 | 92                          | 92             |        |
|      | 344-01-0021 | 74                          | 74             |        |
| TOT: | 12          | 659                         | 654            | 5      |

### A-I. VEGETATION SURVEY DATA TABLES

## Table A5. Stem Count by Plot and Species

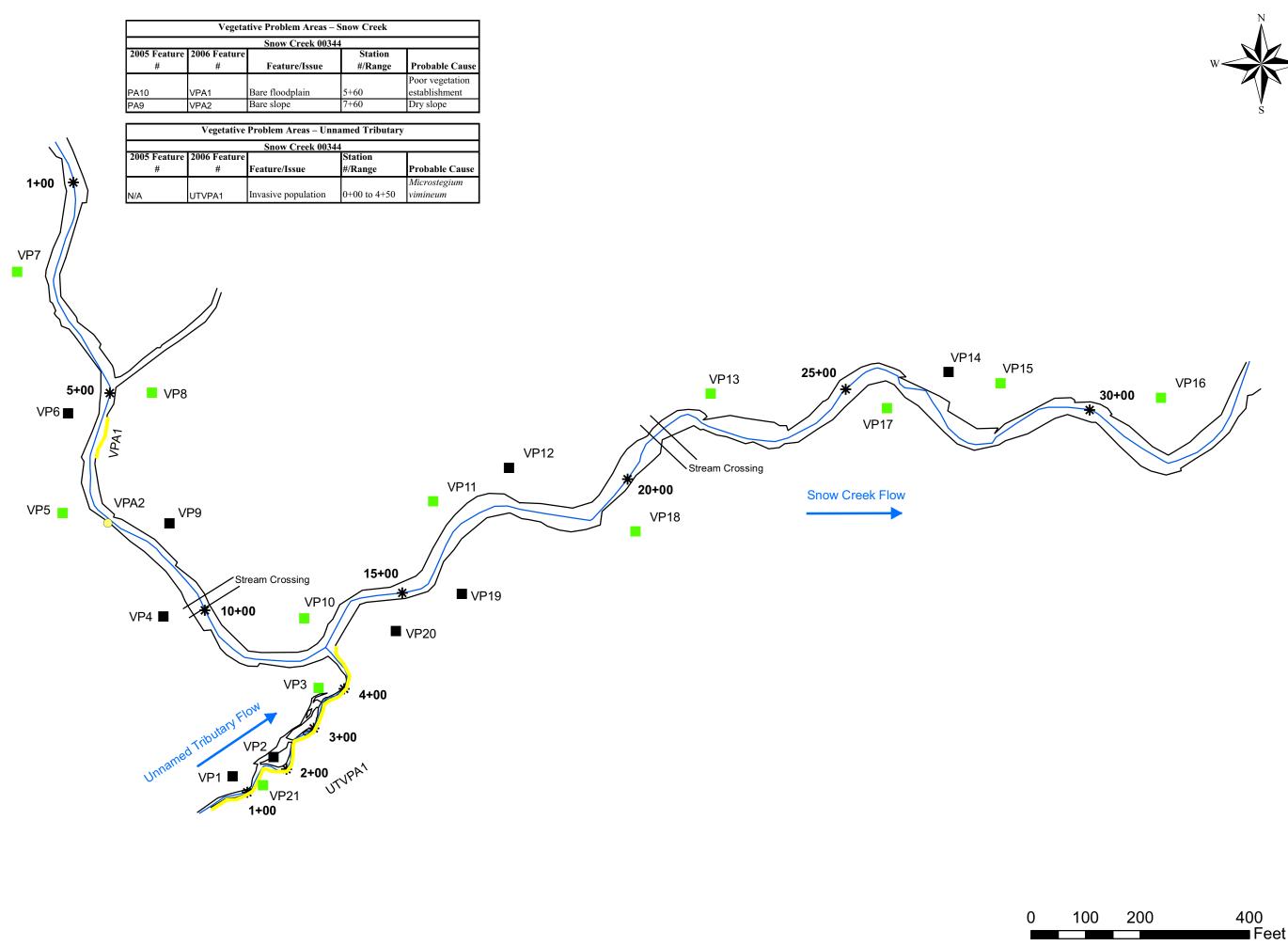
|      | Species                    | Total<br>Stems | #<br>plots | avg#<br>stems | plot<br>344-<br>01-<br>0003 | plot<br>344-<br>01-<br>0005 | plot<br>344-<br>01-<br>0007 | plot<br>344-<br>01-<br>0008 | plot<br>344-<br>01-<br>0010 | plot<br>344-<br>01-<br>0011 | plot<br>344-<br>01-<br>0015 | plot<br>344-<br>01-<br>0016 | plot<br>344-<br>01-<br>0017 | plot<br>344-<br>01-<br>0018 | plot<br>344-<br>01-<br>0021 |
|------|----------------------------|----------------|------------|---------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|      | Alnus                      | 1              | 1          | 1             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             | 1                           |
|      | Alnus serrulata            | 6              | 5          | 1.2           |                             | 1                           |                             |                             |                             |                             | 1                           |                             | 2                           | 1                           | 1                           |
|      | Aronia arbutifolia         | 6              | 4          | 1.5           |                             | 1                           | 2                           | 1                           |                             |                             |                             |                             |                             | 2                           |                             |
|      | Cercis canadensis          | 2              | 2          | 1             |                             |                             | 1                           |                             |                             |                             |                             |                             |                             | 1                           |                             |
|      | Cornus amomum              | 193            | 10         | 19.3          | 66                          | 1                           | 17                          | 3                           |                             | 2                           | 14                          | 2                           | 15                          | 35                          | 38                          |
|      | Cornus florida             | 16             | 1          | 16            |                             |                             |                             |                             |                             |                             |                             |                             |                             | 16                          |                             |
|      | Crataegus                  | 6              | 3          | 2             |                             |                             |                             | 4                           | 1                           |                             |                             |                             | 1                           |                             |                             |
|      | DONTKNOW: unsure<br>record | 2              | 1          | 2             |                             |                             |                             | 2                           |                             |                             |                             |                             |                             |                             |                             |
|      | Nyssa sylvatica            | 6              | 1          | 6             |                             |                             |                             | 6                           |                             |                             |                             |                             |                             |                             |                             |
|      | Platanus occidentalis      | 5              | 2          | 2.5           |                             |                             |                             |                             |                             |                             |                             |                             |                             | 2                           | 3                           |
|      | Prunus serotina            | 1              | 1          | 1             |                             |                             |                             |                             |                             |                             |                             |                             |                             | 1                           |                             |
|      | Quercus rubra              | 1              | 1          | 1             |                             |                             |                             | 1                           |                             |                             |                             |                             |                             |                             |                             |
|      | Quercus velutina           | 1              | 1          | 1             | 1                           |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
|      | Salix nigra                | 126            | 10         | 12.6          | 4                           | 10                          | 12                          | 22                          | 21                          | 1                           | 2                           |                             | 9                           | 24                          | 21                          |
|      | Sambucus canadensis        | 10             | 4          | 2.5           |                             |                             | 2                           |                             |                             |                             | 3                           |                             |                             | 2                           | 3                           |
| TOT: | 15                         | 382            | 15         |               | 71                          | 13                          | 34                          | 39                          | 22                          | 3                           | 20                          | 2                           | 27                          | 84                          | 67                          |

|                 | Snow            | oblem Areas – Snow Creek<br>Creek<br>Number 00344 |         |
|-----------------|-----------------|---------------------------------------------------|---------|
| Feature/Issue   | Station #/Range | <b>Probable Cause</b>                             | Photo # |
| Bare floodplain | 5+60            | Poor vegetation establishment                     | VPA1    |
| Bare slope      | 7+60            | Dry slope                                         | VPA2    |

| Tabl                | e A6b. Vegetative Problem                                        | m Areas – Unnamed Trib | utary  |  |  |  |  |  |  |  |  |
|---------------------|------------------------------------------------------------------|------------------------|--------|--|--|--|--|--|--|--|--|
| Snow Creek          |                                                                  |                        |        |  |  |  |  |  |  |  |  |
|                     | EEP Project I                                                    | Number 00344           |        |  |  |  |  |  |  |  |  |
| Feature/Issue       | Feature/Issue     Station #/Range     Probable Cause     Photo # |                        |        |  |  |  |  |  |  |  |  |
| Invasive population | 0+00 to 4+50                                                     | Microstegium vimineum  | UTVPA1 |  |  |  |  |  |  |  |  |



VPA1 on left bank, facing south




VPA2 on right bank, facing south

#### UNNAMED TRIBUTARY



UTVPA1 on right bank, facing north





#### Prepared By:

URS Corporation - North Carolina 1600 Perimeter Park Drive Suite 400 Morrisville, NC 27560 Phone: 919-461-1100 Fax: 919-461-1415



Prepared For: NC Ecosystem Enhancement Program



Project:

Snow Creek **Stream Restoration** Stokes County, NC

Monitoring Year:

2 (2006)

**Project Number:** 

00344

Date:

January 2007

#### Legend

- Problem Area Concern
- Problem Area Concern
- . Inventoried
- Not Inventoried
- \* Stations
- As-Built Centerline
- As-Built Streambank

Figure 3 Vegetative **Problem Areas** Plan View



VP3



VP5



VP7



VP8



**VP10** 







VP13



VP16



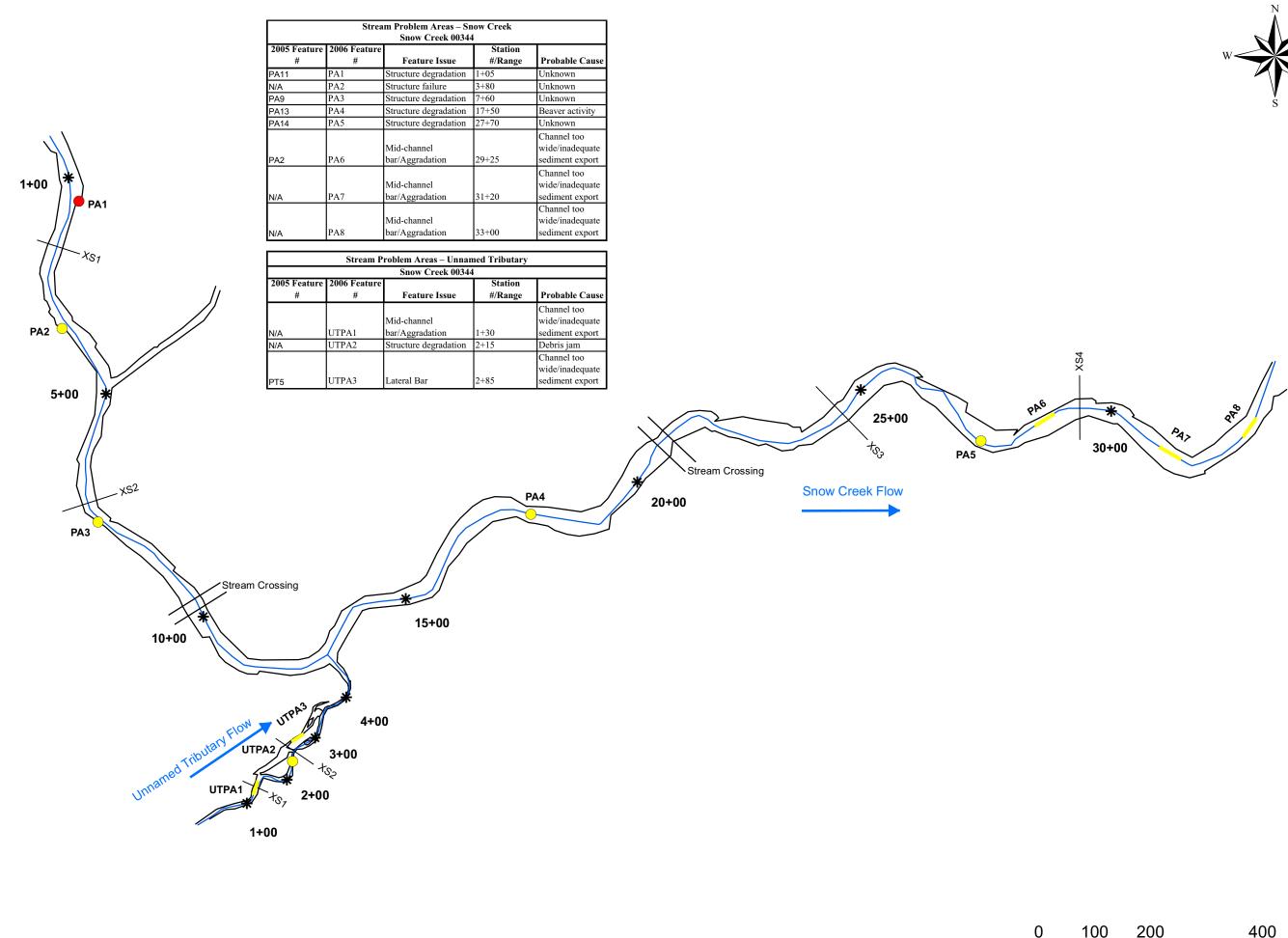
**VP18** 



VP15



VP17






Appendix B (Click here)

# **APPENDIX B**

# **GEOMORPHIC RAW DATA**





#### Prepared By:

URS Corporation - North Carolina 1600 Perimeter Park Drive Suite 400 Morrisville, NC 27560 Phone: 919-461-1100 Fax: 919-461-1415



Prepared For: NC Ecosystem Enhancement Program



Project:

Snow Creek **Stream Restoration** Stokes County, NC

Monitoring Year:

2 (2006)

# **Project Number:**

00344

Date:

January 2007

#### Legend

✤ Stations Problem Area Concern (structure) Problem Area High Concern (structure) Problem Area Concern (bed/bank) Cross Section As-Built Centerline

- As-Built Streambank

Figure 5 Stream **Problem Areas** Plan View



| Table                       |         | oblem Areas – Snow Creek<br>Creek 00344                                                                                                         |     |  |  |  |
|-----------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| Feature Issue               | Station | ow Creek 00344nSuspected CausePhoto #UnknownPA1UnknownPA2UnknownPA3Beaver activityPA4UnknownPA5Channel too wide/inadequatePA6sediment exportPA7 |     |  |  |  |
| Structure degradation       | 1+05    | Unknown                                                                                                                                         | PA1 |  |  |  |
| Structure failure           | 3+80    | Unknown                                                                                                                                         | PA2 |  |  |  |
| Structure degradation       | 7+60    | Unknown                                                                                                                                         | PA3 |  |  |  |
| Structure degradation       | 17+50   | Beaver activity                                                                                                                                 | PA4 |  |  |  |
| Structure degradation       | 27+70   | Unknown                                                                                                                                         | PA5 |  |  |  |
| Mid-channel bar/Aggradation | 29+25   | 1                                                                                                                                               | PA6 |  |  |  |
| Mid-channel bar/Aggradation | 31+20   | Channel too wide/inadequate sediment export                                                                                                     | PA7 |  |  |  |
| Mid-channel bar/Aggradation | 33+00   | Channel too wide/inadequate sediment export                                                                                                     | PA8 |  |  |  |

| Table B1b.                                 |      | Areas – Unnamed Tributary<br>eek 00344      |       |  |  |  |  |  |  |  |  |
|--------------------------------------------|------|---------------------------------------------|-------|--|--|--|--|--|--|--|--|
| Feature IssueStationSuspected CausePhoto # |      |                                             |       |  |  |  |  |  |  |  |  |
| Mid-channel bar/Aggradation                | 1+30 | Channel too wide/inadequate sediment export | UTPA1 |  |  |  |  |  |  |  |  |
| Structure degradation                      | 2+15 | Debris jam                                  | UTPA2 |  |  |  |  |  |  |  |  |
| Lateral Bar                                | 2+85 | Channel too wide/inadequate sediment export | UTPA3 |  |  |  |  |  |  |  |  |



PA1



PA3



PA5



PA2



PA4









PA8

# UNNAMED TRIBUTARY



UTPA1



UTPA3



UTPA2

# APPENDIX B-IV. STREAM PHOTO STATION PHOTOS Photos taken 10/24/06 to 10/26/06

## SNOW CREEK



PS1



PS3



PS5



PS2







#### APPENDIX B-IV. STREAM PHOTO STATION PHOTOS Photos taken 10/24/06 to 10/26/06







PS8





PS11







# APPENDIX B-IV. STREAM PHOTO STATION PHOTOS Photos taken 10/24/06 to 10/26/06



PS13



PS14



PS15





PS17

### UNNAMED TRIBUTARY



**PS18** 



**PS20** 



PS19



|                   | Exhibit Table B1a. Visual Morphological Stabi<br>Snow Creek 0034        | •                                                 | – Snow Creek                    |                                                  |                                     |                                         |
|-------------------|-------------------------------------------------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------------------|-------------------------------------|-----------------------------------------|
| Feature Category  | Metric (per As-built and reference baselines)                           | (# stable)<br>Number<br>performing<br>as Intended | Total<br>number per<br>As-built | Total<br>number/<br>feet in<br>unstable<br>state | % perform<br>in stable<br>condition | Feature<br>perform.<br>Mean or<br>total |
| A. Riffles*       | 1. Present?                                                             | 10                                                | 16                              | 0                                                | 100                                 |                                         |
|                   | 2. Armor stable (no displacement)?                                      | 10                                                | 16                              | 0                                                | 100                                 |                                         |
|                   | 3. Facet grade appears stable?                                          | 10                                                | 16                              | 0                                                | 100                                 |                                         |
|                   | 4. Minimal evidence of embedding/fining?                                | 8                                                 | 16                              | 2                                                | 80                                  |                                         |
|                   | 5. Length appropriate?                                                  | 6                                                 | 16                              | 4                                                | 60                                  |                                         |
|                   |                                                                         |                                                   |                                 |                                                  |                                     | 88                                      |
| B. Pools**        | 1. Present (not subject to severe aggrad. or migration)?                | 26                                                | 19                              | 0                                                | 100                                 |                                         |
|                   | 2. Sufficiently deep (max pool D:mean Bkf >1.6)                         | 23                                                | 19                              | 3                                                | 88                                  |                                         |
|                   | 3. Length appropriate?                                                  | 21                                                | 19                              | 5                                                | 81                                  |                                         |
|                   |                                                                         |                                                   |                                 |                                                  |                                     | 90                                      |
| C. Thalweg        | 1. Upstream of meander bend (run/inflection) centering?                 | 19                                                | 19                              | 0                                                | 100                                 |                                         |
|                   | 2. Downstream of meander (glide/inflection) centering?                  | 19                                                | 19                              | 0                                                | 100                                 |                                         |
|                   |                                                                         |                                                   |                                 |                                                  |                                     | 100                                     |
| D. Meanders       | 1. Outer bend in state of limited/controlled erosion?                   | 19                                                | 19                              | 0                                                | 100                                 |                                         |
|                   | 2. Of those eroding, # w/concomitant point bar formation?               | 19                                                | 19                              | 0                                                | 100                                 |                                         |
|                   | 3. Apparent Rc within spec?                                             | 19                                                | 19                              | 0                                                | 100                                 |                                         |
|                   | 4. Sufficient floodplain access and relief?                             | 19                                                | 19                              | 0                                                | 100                                 |                                         |
|                   |                                                                         |                                                   |                                 |                                                  |                                     | 100                                     |
| E. Bed General    | 1. General channel bed aggradation areas (bar formation)                | NA                                                | 3404                            | 3/171                                            | 95                                  |                                         |
|                   | 2. Channel bed degradation-areas of increasing downcutting/headcutting? | NA                                                | 3404                            | 0                                                | 100                                 |                                         |
|                   |                                                                         |                                                   |                                 |                                                  |                                     | 98                                      |
| F. Bank           | 1. Actively eroding, wasting, or skumping banks                         | NA                                                | NA                              | 0                                                | 100                                 |                                         |
|                   |                                                                         |                                                   |                                 |                                                  |                                     | 100                                     |
| G. Vanes***       | 1. Free of back or arm scour?                                           | 21                                                | 23                              | 3                                                | 88                                  |                                         |
|                   | 2. Height appropriate?                                                  | 23                                                | NA                              | 1                                                | 96                                  |                                         |
|                   | 3. Angle and geometry appear appropriate?                               | 20                                                | NA                              | 4                                                | 83                                  |                                         |
|                   | 4. Free of piping or other structural failures?                         | 23                                                | NA                              | 1                                                | 96                                  |                                         |
|                   |                                                                         |                                                   |                                 |                                                  |                                     | 91                                      |
| H. Wads/ Boulders | 1. Free of scour?                                                       | 1                                                 | NA                              | 0                                                | 100                                 |                                         |
|                   | 2. Footing stable?                                                      | 1                                                 | NA                              | 0                                                | 100                                 |                                         |
|                   |                                                                         |                                                   |                                 |                                                  |                                     | 100                                     |

\* 16 riffles were reported in the 2005 monitoring report. Only 10 were observed during 2006 monitoring \*\* 19 pools were reported in the 2005 monitoring report. Twenty-six were observed during 2006 monitoring. \*\*\* 23 vanes were reported in the 2005 monitoring report. Twenty-four were observed during 2006 monitoring.

|                      | Table B1b. Visual Morphological Stability Asso           Snow Creek 00344 |                                                   | ned Tributary                   | ,                                                |                                     |                                         |
|----------------------|---------------------------------------------------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------------------|-------------------------------------|-----------------------------------------|
| Feature Category     | Metric (per As-built and reference baselines)                             | (# stable)<br>Number<br>performing<br>as Intended | Total<br>number per<br>As-built | Total<br>number/<br>feet in<br>unstable<br>state | % perform<br>in stable<br>condition | Feature<br>perform.<br>Mean or<br>total |
| A. Riffles*          | 1. Present?                                                               | 2                                                 | 6                               | 0                                                | 100                                 |                                         |
| A. Mines             | 2. Armor stable (no displacement)?                                        | 2                                                 | 6                               | 0                                                | 100                                 |                                         |
|                      | 3. Facet grade appears stable?                                            | 2                                                 | 6                               | 0                                                | 100                                 |                                         |
|                      | 4. Minimal evidence of embedding/fining?                                  | 2                                                 | 6                               | 0                                                | 100                                 |                                         |
|                      | 5. Length appropriate?                                                    | 0                                                 | 6                               | 2                                                | 100                                 |                                         |
|                      |                                                                           |                                                   |                                 |                                                  |                                     | 80                                      |
| B. Pools**           | 1. Present (not subject to severe aggrad. or migration)?                  | 12                                                | 9                               | 0                                                | 100                                 |                                         |
|                      | 2. Sufficiently deep (max pool D:mean Bkf >1.6)                           | 12                                                | 9                               | 0                                                | 100                                 |                                         |
|                      | 3. Length appropriate?                                                    | 12                                                | 9                               | 0                                                | 100                                 |                                         |
|                      |                                                                           |                                                   |                                 |                                                  |                                     | 100                                     |
| C. Thalweg           | 1. Upstream of meander bend (run/inflection) centering?                   | All                                               | NA                              | None                                             | 100                                 |                                         |
|                      | 2. Downstream of meander (glide/inflection) centering?                    | All                                               | NA                              | None                                             | 100                                 |                                         |
|                      |                                                                           |                                                   |                                 |                                                  |                                     | 100                                     |
| D. Meanders          | 1. Outer bend in state of limited/controlled erosion?                     | 9                                                 | 9                               | 0                                                | 100                                 |                                         |
|                      | 2. Of those eroding, # w/concomitant point bar formation?                 | 9                                                 | 9                               | 0                                                | 100                                 |                                         |
|                      | 3. Apparent Rc within spec?                                               | 9                                                 | 9                               | 0                                                | 100                                 |                                         |
|                      | 4. Sufficient floodplain access and relief?                               | 9                                                 | 9                               | 0                                                | 100                                 |                                         |
|                      |                                                                           |                                                   |                                 |                                                  |                                     | 100                                     |
| E. Bed General       | 1. General channel bed aggradation areas (bar formation)                  | NA                                                | 454                             | 2/45                                             | 90                                  |                                         |
|                      | 2. Channel bed degradation-areas of increasing downcutting/headcutting?   | NA                                                | 454                             | 0                                                | 100                                 |                                         |
|                      |                                                                           |                                                   |                                 |                                                  |                                     | 95                                      |
| F. Bank              | 1. Actively eroding, wasting, or slumping banks                           | NA                                                | NA                              | 0                                                | 100                                 |                                         |
|                      |                                                                           |                                                   |                                 |                                                  | 100                                 | 100                                     |
| G. Vanes             | 1. Free of back or arm scour?                                             | 7                                                 | 7                               | 0                                                | 100                                 |                                         |
|                      | 2. Height appropriate?                                                    | 7                                                 | 7                               | 0                                                | 100                                 |                                         |
|                      | 3. Angle and geometry appear appropriate?                                 | 7                                                 | 7                               | 0                                                | 100                                 |                                         |
|                      | 4. Free of piping or other structural failures?                           | /                                                 | /                               | 0                                                | 100                                 | 100                                     |
| II Wada/Dauldaua 444 | 1 Error of accure                                                         | 2                                                 | 7                               | 0                                                | 100                                 | 100                                     |
| H. Wads/ Boulders*** | 1. Free of scour?                                                         | 2                                                 | 7                               | 0                                                | 100                                 |                                         |
|                      | 2. Footing stable?                                                        | 2                                                 | /                               | U                                                | 100                                 | 100                                     |

\* 6 riffles were reported in the 2005 monitoring report. Only 2 were observed during 2006 monitoring
\*\* 9 pools were reported in the 2005 monitoring report. Twelve were observed during 2006 monitoring.
\*\*\* 7 wads/boulders were reported in the 2005 monitoring report. Two were observed during 2006 monitoring.

Elevation data were not provided to URS. However, elevation data were used by EcoLogic in plotting Year 1 cross section data. URS was unable to locate benchmarks in the field to establish elevations for the 2006 cross sections. Cross section data were hand manipulated to negate elevation data used in Year 1 cross sections.


Cross section pins were located for all plots with the exception of cross section 2 on the UT to Snow Creek, where the left bank pin was not found. URS re-established the left bank pin in the field. Data from this cross section are not comparable to the previous year's data. The re-establishment of pins effectively relocates the cross sections.

URS has plotted these data on the same graph for reference only. The data and/or graph should not be used to interpret channel change for cross section 2.

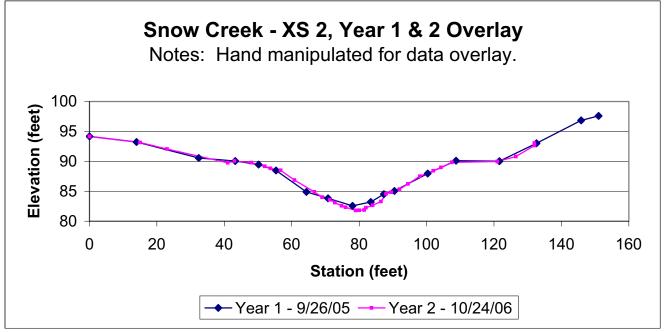
#### REACH 1



XS1 facing right bank



XS1 facing left bank




XS2 facing right bank



XS2 facing left bank



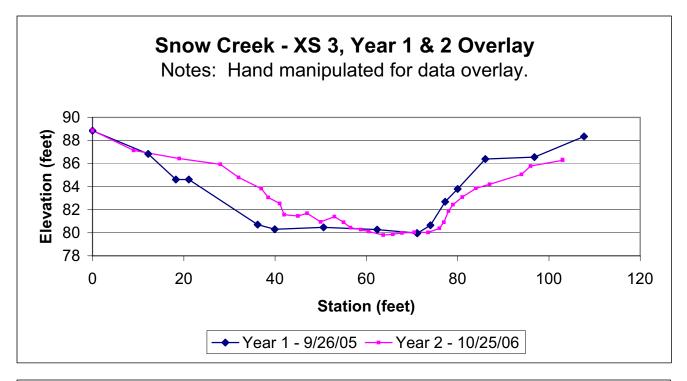


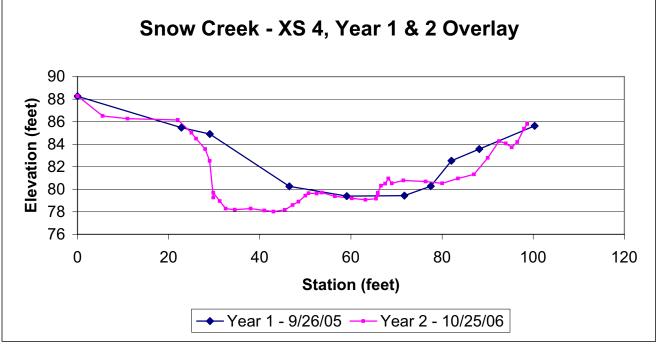
## REACH 2



XS3 facing right bank




XS3 facing left bank




XS4 facing right bank



XS4 facing left bank



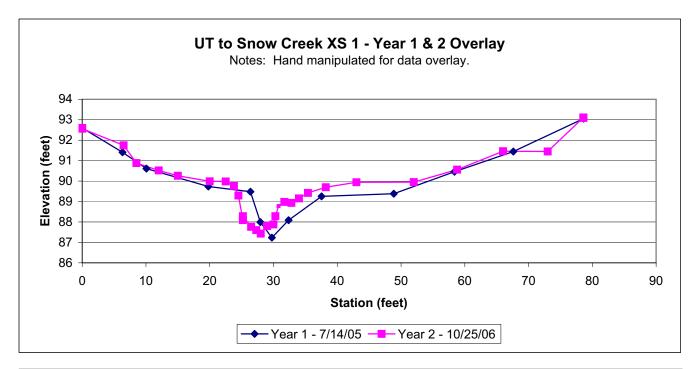


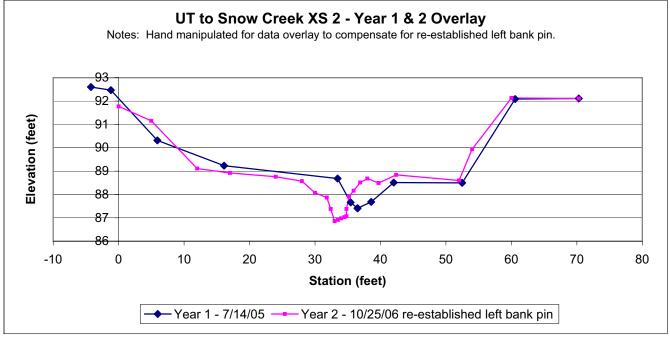
## UNNAMED TRIBUTARY



UTXS1 facing right bank

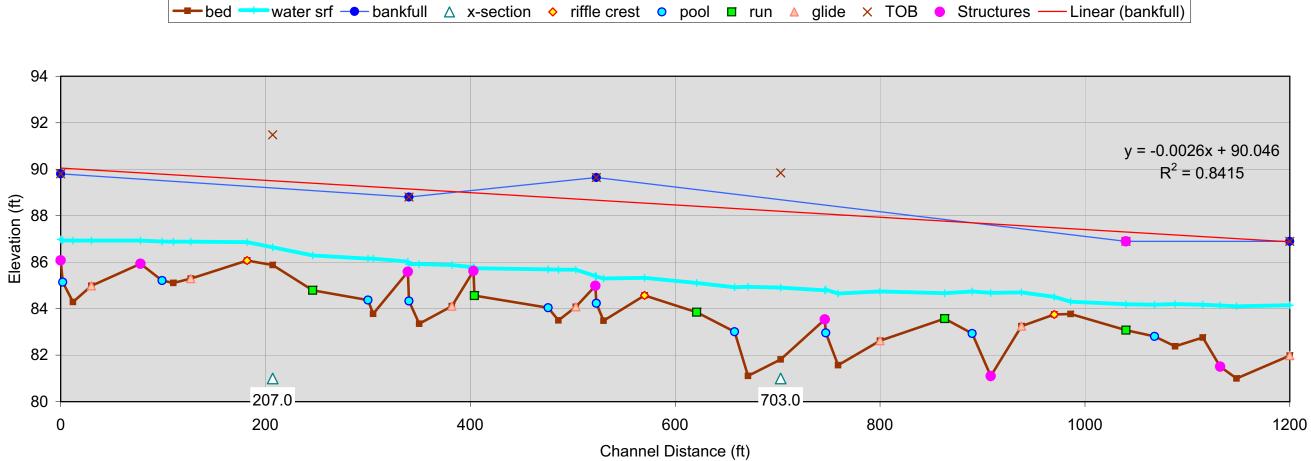



UTXS1 facing left bank

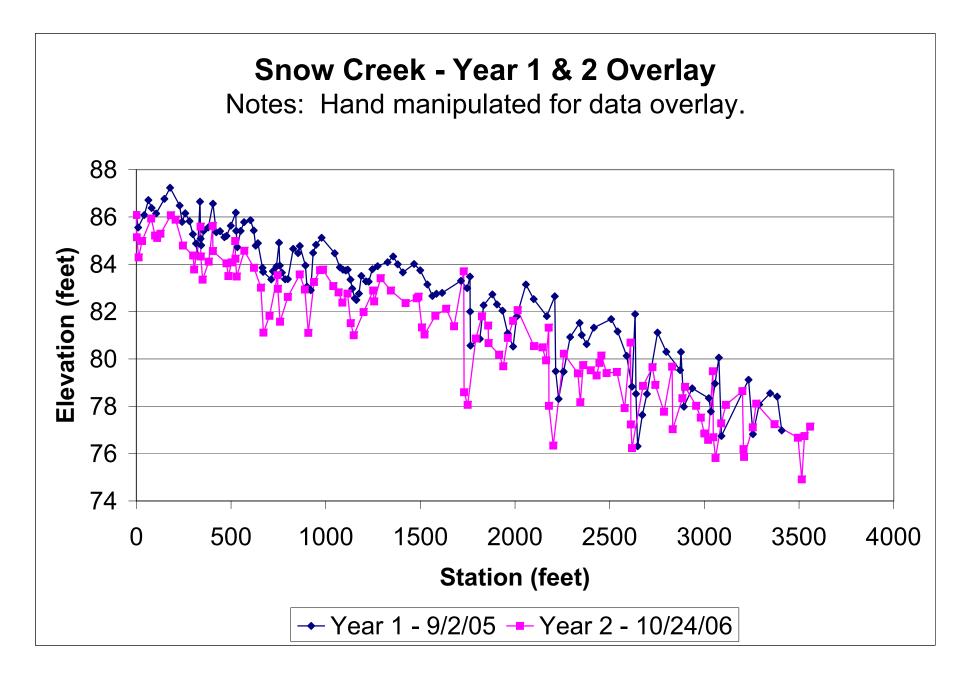



UTXS2 facing right bank

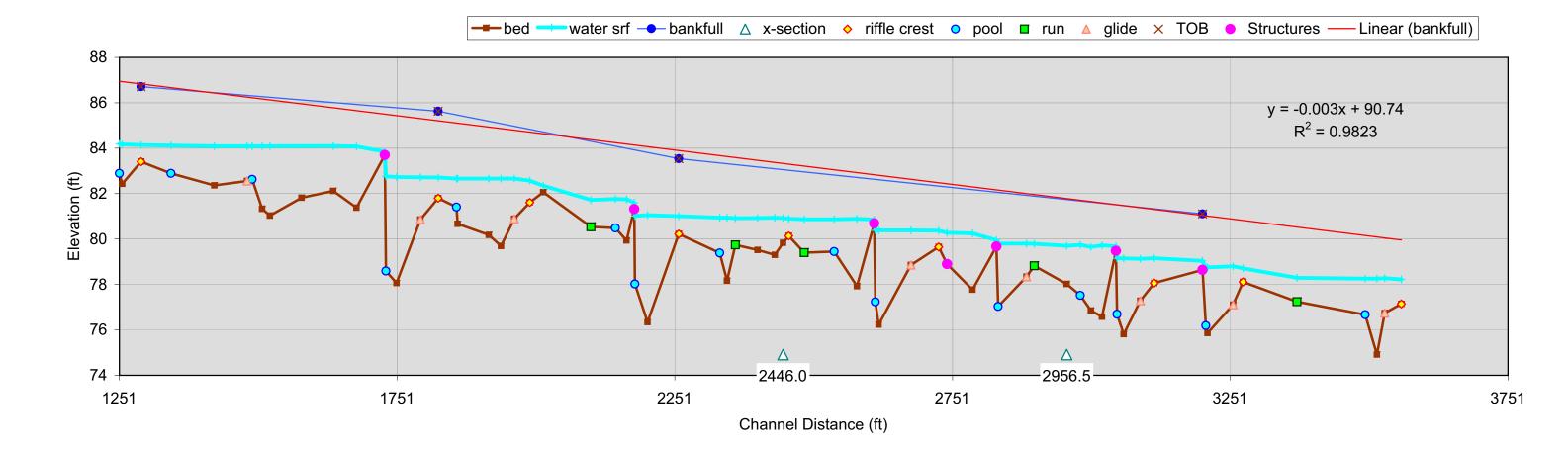



UTXS2 facing left bank





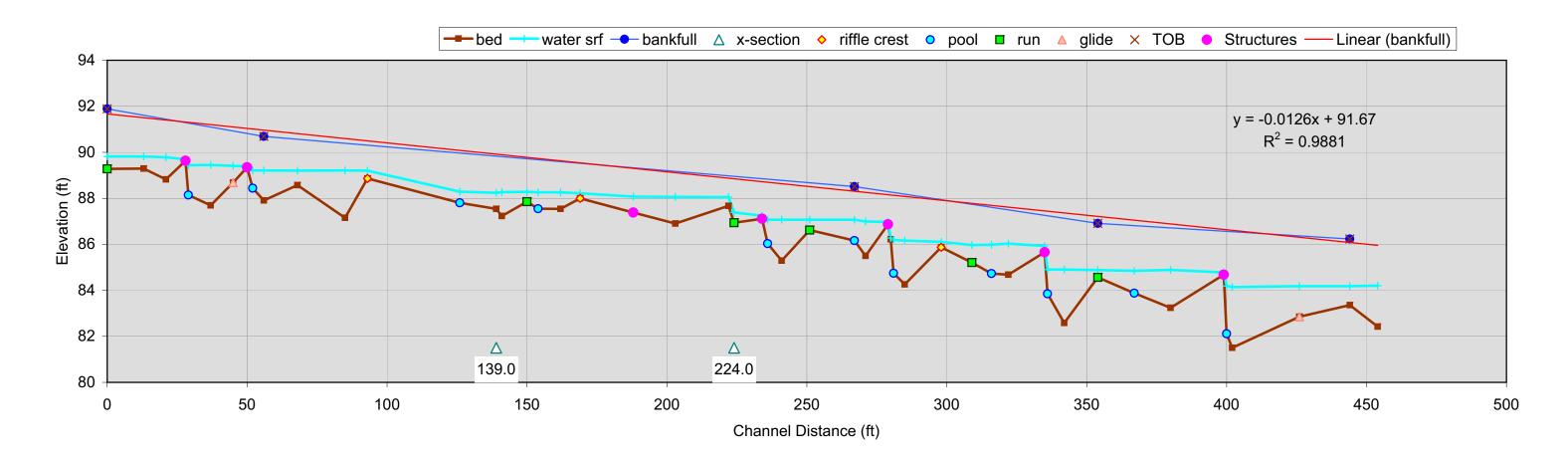

URS


#### REACH 1



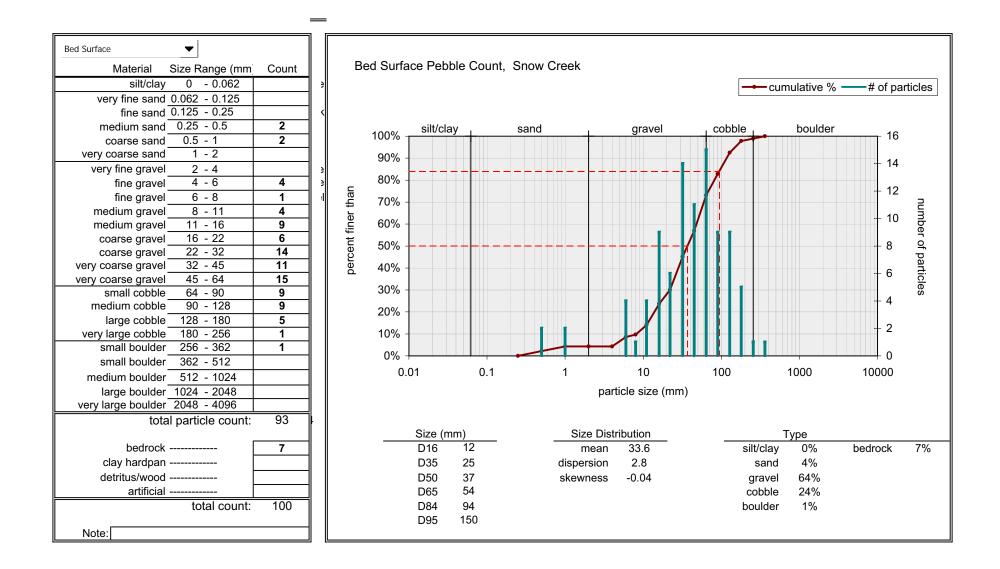
Snow Creek - Reach 1 - 10/24/06




#### REACH 2



# Snow Creek - Reach 2 - 10/25/06


## UNNAMED TRIBUTARY

# Unnamed Tributary to Snow Creek (10/26/06)



#### **REACH 1**

#### Snow Creek Reach 1 Cross Section 1 10/24/06

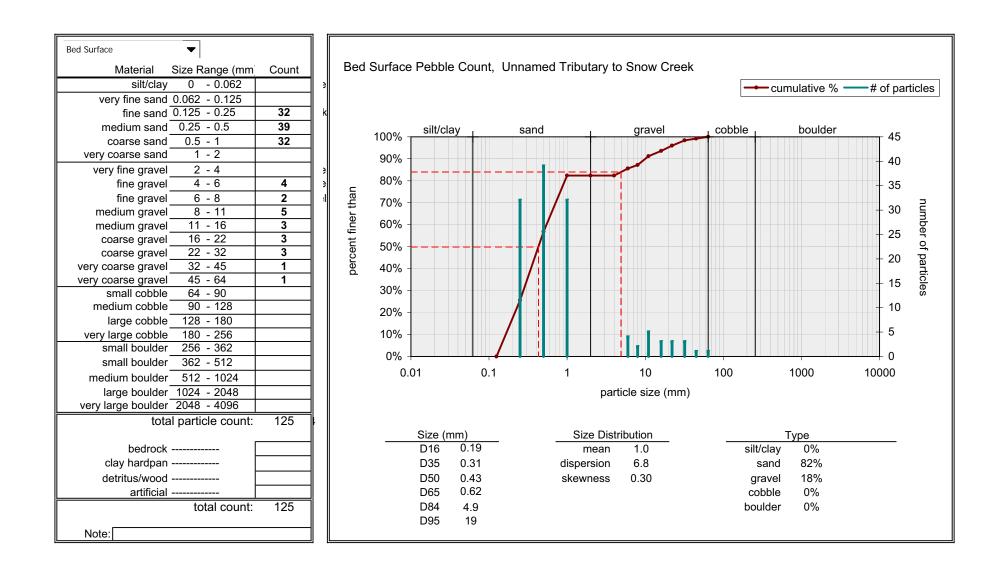


#### Snow Creek Reach 1 Cross Section 2 10/24/06

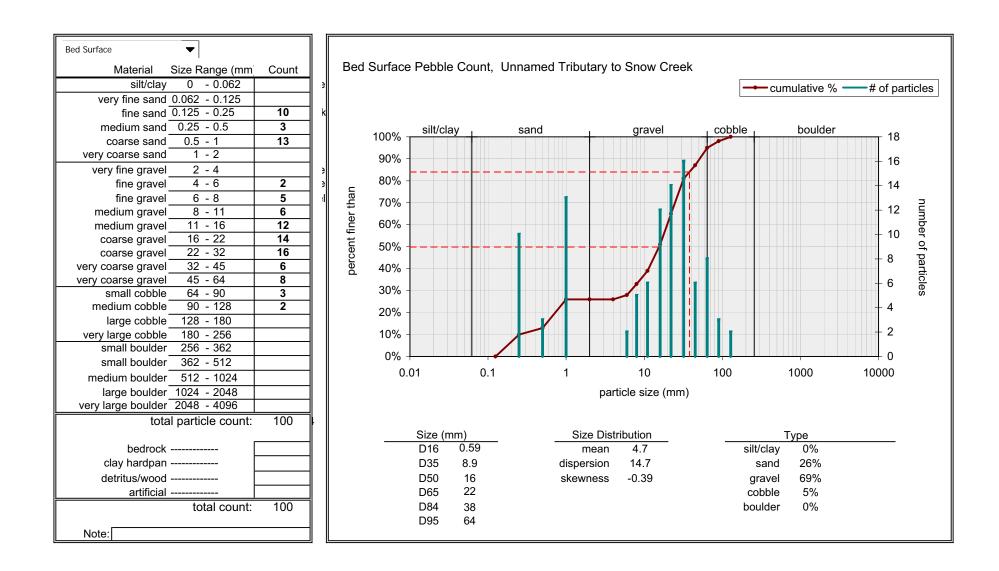
| silt/clay 0<br>very fine sand 0.062<br>fine sand 0.125                                                                                  | 5 - 0.25                                                                                                                                                                 | Count<br>2<br>52                          | 3     | Be                 | ed Surfa                                   |                                        |                                           | nt, Snow | Creek                          |                                      |       |                                                  | nulative %                   | ——# of pa                 | rticles             |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------|--------------------|--------------------------------------------|----------------------------------------|-------------------------------------------|----------|--------------------------------|--------------------------------------|-------|--------------------------------------------------|------------------------------|---------------------------|---------------------|
| very coarse sand<br>very fine gravel<br>fine gravel<br>fine gravel<br>medium gravel<br>medium gravel<br>1                               | $ \begin{array}{c} 5 - 0.5 \\ \hline 5 - 1 \\ \hline - 2 \\ \hline 2 - 4 \\ \hline - 6 \\ \hline 5 - 8 \\ \hline 3 - 11 \\ \hline - 16 \\ \hline 5 - 22 \\ \end{array} $ | 2<br>10<br>1<br>1<br>3<br>5               | - N N | percent finer than | 100% -<br>90% -<br>80% -<br>70% -<br>60% - | silt/cla                               | ay<br>                                    | sand     |                                | gravel                               | cobbl | e                                                | boulder                      | 60<br>- 50<br>- 40        | number              |
| coarse gravel22very coarse gravel32very coarse gravel45small cobble64medium cobble90large cobble126very large cobble180small boulder256 | 2 - 32<br>2 - 45<br>5 - 64<br>4 - 90<br>0 - 128<br>3 - 180<br>0 - 256<br>5 - 362<br>2 - 512                                                                              | 3<br>3<br>6<br>2<br>2<br>2<br>2<br>2<br>1 |       | percen             | 50% -<br>40% -<br>30% -<br>20% -<br>10% -  |                                        |                                           |          |                                |                                      |       |                                                  |                              | - 30<br>- 20<br>- 10<br>0 | number of particles |
| medium boulder 512<br>large boulder 1024<br>very large boulder 2048                                                                     | 2 - 1024<br>4 - 2048                                                                                                                                                     | 97                                        | +     |                    | 0.0                                        | 01<br>Size (n                          | 0.1<br>nm)                                |          | ·                              | 10<br>article size (mm<br>stribution | 100   |                                                  | 1000<br>Туре                 | 10000                     |                     |
| bedrock<br>clay hardpan<br>detritus/wood<br>artificial<br>t<br>Note:                                                                    |                                                                                                                                                                          | 3                                         |       |                    |                                            | D16<br>D35<br>D50<br>D65<br>D84<br>D95 | 0.15<br>0.19<br>0.23<br>0.82<br>42<br>130 | -        | mean<br>dispersion<br>skewness | 92.1                                 |       | silt/clay<br>sand<br>gravel<br>cobble<br>boulder | 2%<br>64%<br>22%<br>8%<br>1% | bedrock                   | 3%                  |

#### REACH 2

#### Snow Creek Reach 2 Cross Section 3 10/25/06


| silt/clay<br>very fine sand<br>fine sand                                                                                                                                                                                                               | 0.125 - 0.25                                                                                                                                                                                                                                                 | Count                                                           | Ş     | Be                 |      |            |                                            | Snow Creek |        |                |                                              | lative % —                          | —# of par                                      | ticles              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------|--------------------|------|------------|--------------------------------------------|------------|--------|----------------|----------------------------------------------|-------------------------------------|------------------------------------------------|---------------------|
| medium sand<br>coarse sand<br>very coarse sand<br>very fine gravel<br>fine gravel<br>medium gravel<br>coarse gravel<br>coarse gravel<br>very coarse gravel<br>very coarse gravel<br>small cobble<br>large cobble<br>very large cobble<br>small boulder | $\begin{array}{c} 0.25 & - 0.5 \\ 0.5 & - 1 \\ 1 & - 2 \\ 2 & - 4 \\ 4 & - 6 \\ 6 & - 8 \\ 8 & - 11 \\ 11 & - 16 \\ 16 & - 22 \\ 22 & - 32 \\ 32 & - 45 \\ 45 & - 64 \\ 64 & - 90 \\ 90 & - 128 \\ 128 & - 180 \\ 180 & - 256 \\ 256 & - 362 \\ \end{array}$ | 15<br>4<br>6<br>5<br>9<br>6<br>6<br>6<br>6<br>7<br>10<br>5<br>2 | 5 S I | percent finer than | 100% | silt/clay  |                                            | sand       | gravel | cobt           |                                              | boulder                             | 30<br>- 25<br>- 20<br>- 15<br>- 10<br>- 5<br>0 | number of particles |
| bedrock<br>clay hardpan<br>detritus/wood                                                                                                                                                                                                               | 2048 - 4096<br>  particle count:<br>                                                                                                                                                                                                                         | 100                                                             |       |                    |      | )35<br>)50 | 0.1<br>0.19<br>0.79<br>8<br>17<br>47<br>73 |            |        | 100<br>mm)<br> | Typ<br>silt/clay<br>sand<br>gravel<br>cobble | 000<br>0%<br>40%<br>53%<br>7%<br>0% | 10000                                          |                     |

#### Snow Creek Reach 2 Cross Section 4 10/25/06


| silt/clay<br>very fine sand 0.0<br>fine sand 0.1                                                                                                                                                                                                                                                                    | 25 - 0.25                                             | Count<br>7<br>7                                                         | )<br>< | Be                 | ed Surfa                                                                               |                                                   | ble Count                                  |      | reek |         |          | - | ulative % -                          | ——# of pa                                                   | rticles             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|--------|--------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|------|------|---------|----------|---|--------------------------------------|-------------------------------------------------------------|---------------------|
| very coarse sand<br>very fine gravel<br>fine gravel<br>fine gravel<br>medium gravel<br>coarse gravel<br>coarse gravel<br>very coarse gravel<br>very coarse gravel<br>very coarse gravel<br>very coarse gravel<br>very coarse gravel<br>very coarse gravel<br>1 small cobble<br>large cobble<br>1 small boulder<br>2 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7<br>12<br>1<br>1<br>2<br>3<br>6<br>12<br>14<br>14<br>14<br>8<br>6<br>7 | A A    | percent finer than | 100% -<br>90% -<br>80% -<br>70% -<br>60% -<br>50% -<br>30% -<br>20% -<br>10% -<br>0% - |                                                   |                                            | sand |      | grave   |          |   | boulder                              | 16<br>- 14<br>- 12<br>- 10<br>- 8<br>- 6<br>- 4<br>- 2<br>0 | number of particles |
| medium boulder 5<br>large boulder 10<br>very large boulder 20                                                                                                                                                                                                                                                       | 12 - 1024<br>24 - 2048<br>48 - 4096<br>article count: | 100                                                                     | ŀ      |                    | 0.0                                                                                    | Size (m<br>D16<br>D35<br>D50<br>D65<br>D84<br>D95 | 0.1<br>0.56<br>12<br>21<br>32<br>56<br>100 |      |      | on 20.1 | (mm)<br> | ( | 000<br>0%<br>26%<br>61%<br>13%<br>0% | 10000                                                       |                     |

## UNNAMED TRIBUTARY

#### Unnamed Tributary Cross Section 1 10/25/06



#### Unnamed Tributary Cross Section 2 10/25/06

